
Laniakea Documentation
Release 2.0.0

Marco Antonio Tangaro

May 16, 2022

Introduction

1 Overview 3

2 Service architecture 5

3 ELIXIR-IIB: The Italian Infrastructure for Bioinformatics 7

4 INDIGO-DataCloud 9
4.1 The ELIXIR-IIB use case in INDIGO . 11
4.2 References . 11

5 Launch Galaxy 13
5.1 Galaxy express . 13
5.2 Galaxy live build . 13
5.3 Instantiate Galaxy . 14
5.4 Galaxy access . 17

6 Launch Galaxy Docker 19
6.1 Instantiate Galaxy . 19
6.2 Galaxy access . 21
6.3 References . 24

7 Launch Galaxy cluster 25
7.1 Galaxy cluster . 25
7.2 Galaxy elastic cluster . 26
7.3 Instantiate Galaxy . 26
7.4 Galaxy access . 28

8 Manage an encrypted instance 31
8.1 Retrieve the encrypted storage passphrase . 31
8.2 Restart Galaxy on an encrypted instance . 32
8.3 Command line interface: luksctl . 32

9 Create SSH Keys 33
9.1 Create your SSH key with Laniakea . 33
9.2 Remove the SSH key from Laniakea . 35
9.3 How to create SSH keys on Linux or macOS . 35
9.4 How to create SSH keys on Windows . 38

i

10 Virtual hardware presets 39
10.1 Laniakea@ReCaS . 39

11 Galaxy Flavours 41
11.1 Galaxy minimal . 41
11.2 Galaxy CoVaCS . 41
11.3 Galaxy GDC Somatic Variant . 41
11.4 Galaxy RNA workbench . 42
11.5 Galaxy Epigen . 42

12 Submit yout flavour 43
12.1 Tool list configuration options . 46
12.2 Conda support . 46
12.3 References . 49

13 Reference Data 51
13.1 data.galaxyproject.org . 52
13.2 elixir-italy.covacs.refdata . 52
13.3 elixir-italy.galaxy.refdata . 52
13.4 Supplementary information . 52

14 Galaxy production environment 59
14.1 OS support . 59
14.2 PostgresSQL . 59
14.3 NGINX . 61
14.4 uWSGI . 62
14.5 Proftpd . 63
14.6 Supervisord . 65
14.7 Paths . 68
14.8 Enable Dockerized tools support in job_conf.xml . 68

15 Galaxy Docker instance 69
15.1 Configuration files . 69
15.2 CVMFS configuration . 70
15.3 Galaxy docker usage . 70
15.4 Galaxy Docker usage tutorial . 71

16 Cluster configuration 73
16.1 job_conf.xml configuration . 73
16.2 Shared file system . 74
16.3 Network configuration . 75
16.4 Worker nodes SSH access . 75
16.5 Worker nodes deployment on elastic cluster . 76
16.6 References . 76

17 Authentication 79
17.1 Registration . 79
17.2 Login . 84

18 Frequently Asked Questions 87
18.1 How to manually recover Galaxy after VM reboot . 87
18.2 I’m unable to create users from admin panel . 87

19 The encryption layer 89
19.1 The encryption strategy . 89

ii

19.2 Storage encryption workflow . 91
19.3 File System Encryption Test . 91
19.4 Fast-luks script . 93
19.5 Luksctl: LUKS volumes management . 93
19.6 LUKSctl: APIs . 95
19.7 Cryptsetup hints . 98
19.8 References . 99

20 Galaxyctl: Galaxy management 101
20.1 Galaxyctl basic usage . 102
20.2 Logging . 102
20.3 Advanced options . 103
20.4 Configuration file . 103
20.5 Features . 104

21 Laniakea Ansible Roles 109
21.1 indigo-dc.galaxycloud . 109
21.2 indigo-dc.galaxycloud-os . 109
21.3 indigo-dc.galaxycloud-tools . 110
21.4 indigo-dc.galaxycloud-refdata . 110
21.5 indigo-dc.galaxycloud-fastconfig . 110
21.6 indigo-dc.galaxycloud_docker . 110
21.7 indigo-dc.cvmfs-client . 111
21.8 indigo-dc.cvmfs-server . 111

22 TOSCA templates 113
22.1 Custom types . 114
22.2 Galaxy template . 124
22.3 Galaxy cluster template . 127

23 Build CVMFS server for reference data 131
23.1 Create CernVM-FS Repository . 131
23.2 Client configuration . 132
23.3 Populate a CernVM-FS Repository (with reference data) . 132
23.4 Reference data download . 133
23.5 References . 134

24 Vault configuration 135
24.1 Vault main concepts . 135
24.2 Vault authentication and authorization flow . 135
24.3 Vault passphrase storage flow . 137
24.4 Passphrase path on Vault . 137

25 Laniakea Dashboard 139
25.1 Configuration . 140

26 Laniakea installation 167
26.1 Services end-points . 169
26.2 Service installation . 170

27 GitHub repository 227

28 DockerHub repository 229

29 Support 231

iii

30 Cite 233

31 Licence 235

32 Galaxy tutorials 237

33 Indices and tables 239

iv

Laniakea Documentation, Release 2.0.0

Laniakea provides the possibility to automate the creation of Galaxy-based virtualized environments through an easy
setup procedure, providing an on-demand workspace ready to be used by life scientists and bioinformaticians.

Galaxy is a workflow manager adopted in many life science research environments in order to facilitate the interaction
with bioinformatics tools and the handling of large quantities of biological data.

Once deployed each Galaxy instance will be fully customizable with tools and reference data and running in an
insulated environment, thus providing a suitable platform for research, training and even clinical scenarios involving
sensible data. Sensitive data requires the development and adoption of technologies and policies for data access,
including e.g. a robust user authentication platform.

For more information on the Galaxy Project, please visit the https://galaxyproject.org

Laniakea has been developed by ELIXIR-IIB, the italian node of ELIXIR, within the INDIGO-DataCloud project
(H2020-EINFRA-2014-2) which aims to develop PaaS based cloud solutions for e-science.

Note: Laniakea is in fast development. For this reason the code and the documentation may not always be in sync.
We try to make our best to have good documentatation

Introduction 1

https://galaxyproject.org

Laniakea Documentation, Release 2.0.0

2 Introduction

CHAPTER 1

Overview

Galaxy is a workflow manager adopted in many life science research environments in order to facilitate the interaction
with bioinformatics tools and the handling of large quantities of biological data. Through a coherent work environment
and an user-friendly web interface it organizes data, tools and workflows providing reproducibility, transparency and
data sharing functionalities to users.

Currently, Galaxy instances can be deployed in three ways, each one with pros and cons: public servers, local servers
and commercial cloud solutions. In particular, the demand for cloud solutions is rapidly growing (over 2400 Galaxy
cloud servers launched in 2015), since they allow the creation of a ready-to-use galaxy production environment avoid-
ing initial configuration issues, requiring less technical expertise and outsourcing the hardware needs. Nevertheless
relying on commercial cloud providers is quite costly and can pose ethical and legal drawbacks in terms of data privacy.

ELIXIR-IIB in the framework of the INDIGO-DataCloud project is developing a cloud Galaxy instance provider,
allowing to fully customize each virtual instance through a user-friendly web interface, overcoming the limitations
of others galaxy deployment solutions. In particular, our goal is to develop a PaaS architecture to automate the cre-
ation of Galaxy-based virtualized environments exploiting the software catalogue provided by the INDIGO-DataCloud
community (www.indigo-datacloud.eu/service-component).

Once deployed each Galaxy instance will be fully customizable with tools and reference data and running in an
insulated environment, thus providing a suitable platform for research, training and even clinical scenarios involving
sensible data. Sensitive data requires the development and adoption of technologies and policies for data access,
including e.g. a robust user authentication platform.

The system allows to setup and launch a virtual machines configured with the Operative System (CentOS 7 or Ubuntu
14.04/16.04) and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL,
Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself. It is possible to choose between different tools
preset, or flavors: basic Galaxy or Galaxy configured with a selection of tools for NGS analyses already installed
and configured (e.g. SAMtools, BamTools, Bowtie, MACS, RSEM, etc. . .) together with reference data for many
organisms.

3

Laniakea Documentation, Release 2.0.0

4 Chapter 1. Overview

CHAPTER 2

Service architecture

The web front-end is designed to grant user friendly access to the service, allowing to easily configure and launch each
Galaxy instance through the indigo_fgw portal.

Fig. 1: Laniakea architecture

All the required components to automatically setup Galaxy instances (Galaxy and all its companion software) are
deployed using the indigo_orchestrator and the indigo_im services, based on the TOSCA orchestration language. The
service is compatible with both OpenNebula and OpenStack, its deployment on different e-infrastructures. Moreover,
it supports both VMs and Docker containers, leaving the selection of the virtual environment to the service providers.
This effectively removes the need to depend on particular configurations (e.g. OpenStack, OpenNebula or other private
cloud solution like Amazon or Google).

5

Laniakea Documentation, Release 2.0.0

Persistent storage is provided to store users and reference data and to install and run new (custom) tools and workflows.
Data security and privacy are granted through the INDIGO indigo_onedata component which, at the same time, allow
for transparent access to the storage resources through token management. Data encryption implemented at file system
level protects user’s data from any unauthorized access.

Automatic elasticity, provided using the indigo_clues service component, enables dynamic cluster resources scaling,
deploying and powering-on new working nodes depending on the workload of the cluster and powering-off them when
no longer needed. This provides an efficient use of the resources, making them available only when really needed.

6 Chapter 2. Service architecture

CHAPTER 3

ELIXIR-IIB: The Italian Infrastructure for Bioinformatics

ELIXIR-IIB (elixir-italy.org) is the Italian Node of ELIXIR (elixir-europe.org) and collects most of the leading Italian
institutions in the field of bioinformatics, including a vast and heterogeneous community of scientists that use, develop
and maintain a large set of bioinformatics services. It represents the Italian Node of ELIXIR, an European research
infrastructure which goal is to integrate research data from all over Europe and ensure a seamless service provision
easily accessible by the scientific community.

ELIXIR-IIB is also one of the scientific communities providing use cases to the INDIGO-Datacloud project (H2020-
EINFRA-2014-2) which aims to develop PaaS based cloud solutions for e-science.

For a complete overview of ELIXIR-IIB related projects and services, please visit: http://elixir-italy.org/en/

7

http://elixir-italy.org/en/

Laniakea Documentation, Release 2.0.0

8 Chapter 3. ELIXIR-IIB: The Italian Infrastructure for Bioinformatics

CHAPTER 4

INDIGO-DataCloud

The INDIGO-DataCloud project (H2020-EINFRA-2014-2) aims to develop an open source computing and data
platform, targeted at multi-disciplinary scientific communities, provisioned over public and private e-infrastructures.

In order to exploit the full capabilities of current cloud infrastructures, supporting complex workflows, data transfer
and analysis scenarios, the INDIGO architecture is based on the analysis and the realization of use cases selected
by different research communities in the areas of High Energy Physics, Bioinformatics, Astrophysics, Environmental
modelling, Social sciences and others.

INDIGO released two software release:

Release Code name URL
First release MIDNIGHT-

BLUE
https://www.indigo-datacloud.eu/news/first-indigo-datacloud-software-release-out

Second re-
lease

ELEC-
TRICINDIGO

https://www.indigo-datacloud.eu/news/electricindigo-second-indigo-datacloud-software-release

The INDIGO-DataCloud releases provide open source components for:

1. IaaS layer: increase the efficiency of existing Cloud infrastructures based on OpenStack or OpenNebula through
advanced scheduling, flexible cloud/batch management, network orchestration and interfacing of high-level
Cloud services to existing storage systems.

9

https://www.indigo-datacloud.eu/news/first-indigo-datacloud-software-release-out
https://www.indigo-datacloud.eu/news/electricindigo-second-indigo-datacloud-software-release

Laniakea Documentation, Release 2.0.0

Fig. 1: The INDIGO-DataCloud architecture

Fig. 2: The INDIGO-DataCloud communities

10 Chapter 4. INDIGO-DataCloud

Laniakea Documentation, Release 2.0.0

2. PaaS layer: easily port applications to public and private Clouds using open programmable interfaces, user-level
containers, and standards-based languages to automate definition, composition and embodiment of complex set-
ups.

3. Identity and Access Management: manage access and policies to distributed resources.

4. FutureGateway: a programmable scientific portal providing easy access to both the advanced PaaS features
provided by the project and to already existing applications.

5. Data Management and Data Analytics Solutions: distribute and access data through multiple providers via
virtual file systems and automated replication and caching.

For a complete list of INDIGO-DataCloud services, please visit: https://www.indigo-datacloud.eu/service-component

4.1 The ELIXIR-IIB use case in INDIGO

ELIXIR-IIB in the framework of the INDIGO-DataCloud project is developing a cloud Galaxy instance provider,
allowing to fully customize each virtual instance through a user-friendly web interface, overcoming the limitations
of others galaxy deployment solutions. In particular, our goal is to develop a PaaS architecture to automate the cre-
ation of Galaxy-based virtualized environments exploiting the software catalogue provided by the INDIGO-DataCloud
community.

1. All Galaxy required components automatically deployed (INDIGO PaaS Orchestrator and the Infrastructure
Manager):

• Galaxy

• PostgreSQL

• NGINX

• uWSGI

• Proftpd

• Galaxy tools (from ToolShed)

• Reference Data

2. User friendly access, allowing to easily configure and launch a Galaxy instance (INDIGO FutureGateway
portal)

3. Authentication (Identity and Access Management and FutureGateway)

4. Persistent storage, data security and privacy (Onedata or IaaS block storage with filesystem encryption).

5. Cluster support with automatic elasticity (INDIGO CLUES).

4.2 References

INDIGO services

4.1. The ELIXIR-IIB use case in INDIGO 11

https://www.indigo-datacloud.eu/service-component
https://www.indigo-datacloud.eu/service-component

Laniakea Documentation, Release 2.0.0

Fig. 3: ELIXIR-IIB use case in INDIGO architecture for single Galaxy instances deployment.

Fig. 4: ELIXIR-IIB use case in INDIGO architecture for Galaxy with cluster support deployment

12 Chapter 4. INDIGO-DataCloud

CHAPTER 5

Launch Galaxy

The Laniakea dashboard tiles allow user to deploy a standard Galaxy production environment through two methods:
Galaxy express and Galaxy live build.

See also:

To login to the Laniakea dashboard visit the section: Authentication.

5.1 Galaxy express

The Galaxy express instantiate a CentOS 7 Virtual Machine with Galaxy, all its companion software and the set of tools
that come with the selected flavour. Once deployed each Galaxy instance can be further customized with additional
tools and reference data.

This version is usually quite reliable and work well for most users.

5.2 Galaxy live build

The Galaxy live build allows to setup and launch a virtual machine configured with the Operative System CentOS 7
and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL, Nginx, uWSGI
and Proftpd and to deploy the Galaxy platform itself and the tools that come with the selected flavour.

13

https://docs.galaxyproject.org/en/latest/admin/production.html

Laniakea Documentation, Release 2.0.0

This version is recommended for those users which want to be sure to have the latest available version of each tool.

Warning: In fact, each tool is downloaded from the repositories and configured on the fly. Depending on the
number of the tools to be installed the deployment process may take time a variable amount of time.

5.3 Instantiate Galaxy

Enter the Galaxy express or Galaxy live build configuration section. The configuration options are the same.

Provide a description for your instance using the Instance description field, which will identfy your Galaxy
in the Deployments page, once your request is submitted.

Two panels allows to configure the virtual hardware and the Galaxy instance respectively.

5.3.1 Virtual hardware configuration

1. Select your instance flavour (virtual CPUs and the memory size). More information on available virtual hard-
ware presets can be found here: Virtual hardware presets.

2. Copy & Paste your SSH key, to login in the Galaxy instance or configure it in the Create SSH Keys page.

3. Laniakea provides the possibility to encrypt the storage volume associated with the virtual machine on-demand,
to protect user data.

To enable storage encryption set the switch to ON.

Warning: Only the external volume where Galaxy data are stored is encrypted, not the Virtual Machine
root disk.

The storage will be encrypted with a strong alphanumerical passphrase. More information on this topic can be
found here:

• Manage an encrypted instance

• The encryption layer

4. Finally, it is possible to select the user storage volume size.

14 Chapter 5. Launch Galaxy

Laniakea Documentation, Release 2.0.0

5.3. Instantiate Galaxy 15

Laniakea Documentation, Release 2.0.0

16 Chapter 5. Launch Galaxy

Laniakea Documentation, Release 2.0.0

5.3.2 Galaxy configuration

1. Select the Galaxy version, the instance administrator e-mail and the Galaxy brand tag (the top-left name in the
Galaxy home page).

2. Provide a valid e-mail address as Galaxy administrator credential.

Note: A notification mail will be sent to this e-mail address once the deployment is done.

3. Select the Galaxy flavour among those available (see section Galaxy Flavours).

4. Select Galaxy reference dataset. The default should be the best choice for most users (see section Reference
Data).

5. Finally, SUBMIT your request.

5.4 Galaxy access

Once your Galaxy instance is ready, a confirmation e-mail is sent to the Laniakea user and to the galaxy administrator
email, if different, with the Galaxy URL and user credentials.

Warning: If you don’t receive the e-mail:

1. Check you SPAM mail directory

2. Chek mail address spelling

3. Wait 15 minutes more.

The instance information are also available in the Deployments page of the dashboard:

The galaxy administrator password and the API key are automatically set during the instatiation procedure and are the
same for each instance:

User: administrator e-mail

Password: galaxy_admin_password

API key: ADMIN_API_KEY

Warning: Change the Galaxy password and API key as soon as possible!

Warning: The anonymous login is disabled by default.

5.4. Galaxy access 17

Laniakea Documentation, Release 2.0.0

18 Chapter 5. Launch Galaxy

CHAPTER 6

Launch Galaxy Docker

The Laniakea dashboard tiles allow user to deploy Galaxy through its official Docker image.

See also:

To login to the Laniakea dashboard visit the section: Authentication.

The Galaxy Docker instantiate an Ubuntu 16.04 Virtual Machine with the Galaxy official Docker. Once deployed each
Galaxy instance can be further customized with additional tools and reference data.

6.1 Instantiate Galaxy

Enter the Galaxy Docker configuration section.

19

https://github.com/bgruening/docker-galaxy-stable

Laniakea Documentation, Release 2.0.0

20 Chapter 6. Launch Galaxy Docker

Laniakea Documentation, Release 2.0.0

Provide a description for your instance using the Instance description field, which will identfy your Galaxy
in the Deployments page, once your request is submitted.

Two panels allows to configure the virtual hardware and the Galaxy instance respectively.

6.1.1 Virtual hardware configuration

1. Select your instance flavour (virtual CPUs and the memory size). More information on available virtual hard-
ware presets can be found here: Virtual hardware presets.

2. Copy & Paste your SSH key, to login in the Galaxy instance or configure it in the Create SSH Keys page.

3. Laniakea provides the possibility to encrypt the storage volume associated with the virtual machine on-demand,
to protect user data.

To enable storage encryption set the switch to ON .

Warning: Only the external volume where Galaxy data are stored is encrypted, not the Virtual Machine
root disk.

The storage will be encrypted with a strong alphanumerical passphrase. More information on this topic can be
found here:

• Manage an encrypted instance

• The encryption layer

4. Finally, it is possible to select the user storage volume size.

6.1.2 Galaxy configuration

1. Select the instance administrator e-mail and the Galaxy brand tag (the top-left name in the Galaxy home page).

2. Provide a valid e-mail address as Galaxy administrator credential.

Note: A notification mail will be sent to this e-mail address once the deployment is done.

3. Select the Galaxy flavour among those available.

4. Select Galaxy reference dataset. The default should be the best choice for most users (see section Reference
Data).

5. Finally, SUBMIT your request.

6.2 Galaxy access

Once your Galaxy instance is ready, a confirmation e-mail is sent to the Laniakea user and to the galaxy administrator
email, if different, with the Galaxy URL and user credentials.

Warning: If you don’t receive the e-mail:

1. Check you SPAM mail directory

6.2. Galaxy access 21

Laniakea Documentation, Release 2.0.0

22 Chapter 6. Launch Galaxy Docker

Laniakea Documentation, Release 2.0.0

2. Chek mail address spelling

3. Wait 15 minutes more.

The instance information are also available in the Deployments page of the dashboard:

The galaxy administrator password and the API key are automatically set during the instatiation procedure and are the
same for each instance:

User: administrator e-mail

Password: galaxy_admin_password

API key: ADMIN_API_KEY

Warning: Change the Galaxy password and API key as soon as possible!

Warning: The anonymous login is disabled by default.

6.2. Galaxy access 23

Laniakea Documentation, Release 2.0.0

6.3 References

Official Galaxy Docker slides

24 Chapter 6. Launch Galaxy Docker

https://galaxyproject.github.io/training-material/topics/admin/tutorials/galaxy-docker/slides.html#1

CHAPTER 7

Launch Galaxy cluster

Galaxy serves tools which may require a wide range of computing resources to properly work. To account this, the
Laniakea dashboard tiles allow user to deploy a standard Galaxy production environment connected to a compute
cluster.

See also:

To login to the Laniakea dashboard visit the section: Authentication.

7.1 Galaxy cluster

The Galaxy cluster instantiate a Galaxy server and the worker nodes.

7.1.1 Galaxy cluster Express

The Galaxy cluster Express instantiate a CentOS 7 Virtual Machine with Galaxy, all its companion software and the
set of tools that come with the selected flavour. Once deployed each Galaxy instance can be further customized with
additional tools and reference data.

This version is usually quite reliable and work well for most users.

25

https://docs.galaxyproject.org/en/latest/admin/production.html
https://galaxyproject.github.io/training-material/topics/admin/tutorials/connect-to-compute-cluster/tutorial.html
https://galaxyproject.github.io/training-material/topics/admin/tutorials/connect-to-compute-cluster/tutorial.html

Laniakea Documentation, Release 2.0.0

7.1.2 Galaxy cluster Live Build

The Galaxy cluster Live Build allows to setup and launch a virtual machine configured with the Operative System
CentOS 7 and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL,
Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself and the tools that come with the selected flavour.

This version is recommended for those users which want to be sure to have the latest available version of each tool.

7.2 Galaxy elastic cluster

The Galaxy elastic cluster section allows to deploy a Galaxy Server with automatic elasticity support for worker nodes
deplyment. Automatic elasticity enables dynamic cluster resources scaling, deploying and powering on new working
nodes depending on the workload of the cluster and powering-off them when no longer needed. This provides an
efficient use of the resources, making them available only when really needed.

Warning: Currently, this feature is under beta testing. Galaxy and tools are installed on-the-fly starting from
a bare CentOS 7 image. The whole process, i.e. install Galaxy and tools, may take time. We will soon add the
possibility to exploit images with tools to speed-up the configuration

Warning: Each node takes 12 minutes or more to be instantiated. Therefore, the job needs the same time to start.
On the contrary, if the node is already deployed, the job will start immediately.

7.3 Instantiate Galaxy

Enter the Galaxy cluster (Express or Live BUild) or Galaxy elastic cluster configuration section. The configuration
options are the same.

Provide a description for your instance using the Instance description field, which will identfy your Galaxy
in the Deployments page, once your request is submitted.

Two panels allows to configure the virtual hardware and the Galaxy instance respectively.

26 Chapter 7. Launch Galaxy cluster

Laniakea Documentation, Release 2.0.0

7.3. Instantiate Galaxy 27

Laniakea Documentation, Release 2.0.0

1. Select the instance flavour (virtual CPUs and the memory size) for your Front node, i.e. the Galaxy server. More
information on available virtual hardware presets can be found here: Virtual hardware presets.

2. Select the number of Virtual Worker Nodes of your Cluster and the instance flavor, (virtual CPUs and RAM) for
each worker node. More information on available virtual hardware presets can be found here: Virtual hardware
presets.

3. Copy & Paste your SSH key, to login in the Galaxy instance or configure it in the Create SSH Keys page.

4. Laniakea provides the possibility to encrypt the storage volume associated with the virtual machine on-demand,
to protect user data.

To enable storage encryption set the switch to ON .

Warning: Only the external volume where Galaxy data are stored is encrypted, not the Virtual Machine
root disk.

The storage will be encrypted with a strong alphanumerical passphrase. More information on this topic can be
found here:

• Manage an encrypted instance

• The encryption layer

5. Finally, it is possible to select the user storage volume size.

1. Select the Galaxy version, the instance administrator e-mail and the Galaxy brand tag (the top-left name in the
Galaxy home page).

2. Provide a valid e-mail address as Galaxy administrator credential.

Note: A notification mail will be sent to this e-mail address once the deployment is done.

3. Select the Galaxy flavour among those available (see section Galaxy Flavours).

4. Select Galaxy reference dataset. The default should be the best choice for most users (see section Reference
Data).

5. Finally, SUBMIT your request.

7.4 Galaxy access

Once your Galaxy instance is ready, a confirmation e-mail is sent to the Laniakea user and to the galaxy administrator
email, if different, with the Galaxy URL and user credentials.

Warning: If you don’t receive the e-mail:

1. Check you SPAM mail directory

2. Chek mail address spelling

3. Wait 15 minutes more.

The instance information are also available in the Deployments page of the dashboard:

28 Chapter 7. Launch Galaxy cluster

Laniakea Documentation, Release 2.0.0

7.4. Galaxy access 29

Laniakea Documentation, Release 2.0.0

The galaxy administrator password and the API key are automatically set during the instatiation procedure and are the
same for each instance:

User: administrator e-mail

Password: galaxy_admin_password

API key: ADMIN_API_KEY

Warning: Change the Galaxy password and API key as soon as possible!

Warning: The anonymous login is disabled by default.

30 Chapter 7. Launch Galaxy cluster

CHAPTER 8

Manage an encrypted instance

Laniakea provides the possibility to encrypt the storage volume associated to the virtual machine on-demand.

A detailed description of Laniakea encryption strategy is reported here: The encryption layer.

Warning: Only the external volume, where Galaxy data are stored, is encrypted, not the Virtual Machine root
disk. The encryption layer should be secure enough to protect data uploaded from users to the Galaxy instance
from any unwanted attention. However, users must be aware that the responsibility of correctly handling any
sensitive data they upload to Laniakea falls on them and that the administrators of the Laniakea service can not
be considered responsible for any data breach that may happen due to negligence by Galaxy users or the action of
external malicious attackers.

8.1 Retrieve the encrypted storage passphrase

Cryptographic keys should never be transmitted in the clear. For this reason Laniakea encrypt your storage with a
strong alphanumerical random passphrase.

This passphrase can be easily retrieved thorugh the dashboard.

Warning: If you require the storage encryption, please retrieve your passphrase as soon as possible and keep it
secret.

1. Connect to the dashboard and click on the name of your encrypted instance.

2. In the overview tab, click on Retrieve LUKS passphrase button.

3. Copy your passphtase.

31

Laniakea Documentation, Release 2.0.0

8.2 Restart Galaxy on an encrypted instance

In case of reboot of yout virtual instance, the encrypted storage cannot be automatically enabled again, since the
encryption passphrase is needed. The user intervention is needed.

It is possible to do this through the dashboard.

1. Connect to the dashboard and click on the name of your encrypted instance.

2. In the overview tab, the button Unlock and mount volulme is available only if the encrypted storage is
not mounted. Click it to unlock

3. It is now possible to restart Galaxy. The button Try to restart Galaxy will be enabled only if the
encrypted storage is correctly mounted, avoiding to start Galaxy without user data.

Note: If the automatic procecure does not work, please have a look here: Frequently Asked Questions

8.3 Command line interface: luksctl

To easily the encrypted storage management a python script, luksctl, is installed.

By default its configuration file is stored in /etc/luks/luks-cryptdev.ini.

Warning: Please don’t change it unless you know what you’re doing.

Note: The script requires superuser rights.

Here the list of the currently available commands:

Action Command Description
Open sudo luksctl open Open the encrypted device, requiring your passphrase.
Close sudo luksctl close Close and umount the encrypted device
Status sudo luksctl status Check device status

32 Chapter 8. Manage an encrypted instance

CHAPTER 9

Create SSH Keys

SSH keys allow you to establish a secure connection between your computer and Galaxy.

Generating a key pair provides you with two long string of characters: a public and a private key. Laniakea upload the
public key on the Galaxy server and then unlock it by connecting to it with a client that already has the private key.
When the two match up, the system unlocks without the need for a password. You can increase security even more by
protecting the private key with a passphrase.

Warning: Laniakea requires ONLY a SSH public key to instatiate Galaxy and grant you the access on the Virtual
Machine.

9.1 Create your SSH key with Laniakea

During the Galaxy instance configuration procedure a SSH public key has to be mandatorly provided. This field, in
fact, is required and without the SSH key you won’t be able to submit your deployment.

Warning: FOR SECURITY REASONS THE SSH KEY OF A VIRTUAL INSTANCE CANNOT BE
CHANGED FROM THE LANIAKEA DASHBOARD AFTER ITS DEPLOYMENT. IF NEEDED, AND IF YOU
KNOW WHAT YOU ARE DOING, IT CAN STILL BE MODIFIED ACCESSING DIRECLY THE INSTANCE
VIA SSH.

NOTICE THAT IF YOU LOSE THE PRIVATE KEY CORRESPONDING TO THE PUBLIC ONE ON
THE VM HOSTING YOUR GALAXY INSTANCE, IT WILL BECOME UNACCESSIBLE FOREVER.

An example of using interpreted text

For this reason the Laniakea dashboard provides a menu to upload/create the user public (and private) key, in the top
left user menu.

This will load the SSH management page, which will allow you to upload a SSH public key or generate a SSH key
pair.

33

Laniakea Documentation, Release 2.0.0

34 Chapter 9. Create SSH Keys

Laniakea Documentation, Release 2.0.0

We recommend you to manually generate your SSH key pair and then upload the SSH public key on Laniakea. Paste
your public Key in the text box

and press the upload button.

If you don’t have a public key, it is possible to create a SSH key pair, i.e. a public and a private key.

Warning: The private key is not exploited by Laniakea. Is only generated and uploaded on Vault for security.
Please download it. The Laniakea team will not be held liable for lost data due to hardware failure, virus, spyware,
corruption or any other situation.

And then retrieve it with the Retrieve SSH private key button.

Once the public SSH key is available on the Dashboard the service will recognize it and it no longer needs to be loaded.

9.2 Remove the SSH key from Laniakea

It is possible to delete the SSH key (pair) from Laniakea with Delete button.

Warning: The key will not be removed from the virtual instances where it has been inserted. Once removed, if
not saved elsewhere, and if no different keys were added, you will not be able to access the instances.

9.3 How to create SSH keys on Linux or macOS

https://www.digitalocean.com/docs/droplets/how-to/add-ssh-keys/create-with-openssh/

9.2. Remove the SSH key from Laniakea 35

https://www.digitalocean.com/docs/droplets/how-to/add-ssh-keys/create-with-openssh/

Laniakea Documentation, Release 2.0.0

36 Chapter 9. Create SSH Keys

Laniakea Documentation, Release 2.0.0

9.3. How to create SSH keys on Linux or macOS 37

Laniakea Documentation, Release 2.0.0

9.4 How to create SSH keys on Windows

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/ssh-from-windows

38 Chapter 9. Create SSH Keys

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/ssh-from-windows

CHAPTER 10

Virtual hardware presets

Each cloud provider enable a set of Image Flavor, defined in terms of Virctual CPUs (VCPUS), Memory, Disk, etc.

10.1 Laniakea@ReCaS

Currently, the following pre-sets are available at ReCaS-Bari facility:

Name VCPUs RAM Disk Enabled
small 1 2 GB 20 GB No
medium 2 4 GB 20 GB No
large 4 8 GB 20 GB Yes
xlarge 8 16 GB 20 GB Yes
xxlarge 16 32 GB 20 GB No

Note: New flavors can be assigned to particular projects.

Note: The storage associated tho each instance is configured separately.

39

Laniakea Documentation, Release 2.0.0

40 Chapter 10. Virtual hardware presets

CHAPTER 11

Galaxy Flavours

Each Galaxy instance is customizable, through the web front-end, with different sets of pre installed tools (e.g. SAM-
tools, BamTools, Bowtie, MACS, RSEM, etc. . .), exploiting CONDA as default dependency resolver. New tools are
automatically installed using the official GalaxyProject python library Ephemeris.

Currently the following Galaxy flavours are available on Laniakea

11.1 Galaxy minimal

Description Galaxy production-grade server (Galaxy, PostgreSQL, NGINX, proFTPd, uWSGI).

Reference data repository usegalaxy.org Galaxy reference data CVMFS repository

11.2 Galaxy CoVaCS

Description Workflow for genotyping and variant annotation of whole genome/exome and target-gene
sequencing data.

For more information on CoVaCs Flavour visit this page: galaxy_covacs.

Reference data repository ELIXIR-IT Galaxy CoVaCS reference data CVMFS repository

Reference https://www.ncbi.nlm.nih.gov/pubmed/29402227

11.3 Galaxy GDC Somatic Variant

Description Port of the Genomic Data Commons (GDC) pipeline for the identification of somatic vari-
ants on whole exome/genome sequencing data.

For more information on GDC Somatic Variant visit this page: galaxy_gdc.

Reference data repository usegalaxy.org Galaxy reference data CVMFS repository

41

https://ephemeris.readthedocs.io/en/latest/index.html
https://www.ncbi.nlm.nih.gov/pubmed/29402227

Laniakea Documentation, Release 2.0.0

Reference https://gdc.cancer.gov/node/246

11.4 Galaxy RNA workbench

Description More than 50 tools for RNA centric analysis.

Reference data repository usegalaxy.org Galaxy reference data CVMFS repository

Reference https://www.ncbi.nlm.nih.gov/pubmed/28582575

11.5 Galaxy Epigen

Description Based on Epigen project.

Reference data repository usegalaxy.org Galaxy reference data CVMFS repository

Reference Galaxy Epigen server

11.5.1 Create new Galaxy flavours

New flavors can be created through yaml recipes with the list of tools. A tool list example can be found here.

For more information on how to create a flavour visit this page: Submit yout flavour.

11.5.2 References

Galaxy flavors

Ephemeris

Ephemeris documentation

Conda for Galaxy tools dependencies

42 Chapter 11. Galaxy Flavours

https://gdc.cancer.gov/node/246
https://www.ncbi.nlm.nih.gov/pubmed/28582575
http://159.149.160.87/galaxy
https://raw.githubusercontent.com/indigo-dc/Galaxy-flavors-recipes/master/galaxy-testing/galaxy-testing-tool-list.yml
https://github.com/bgruening/docker-galaxy-stable#Extending-the-Docker-Image
https://ephemeris.readthedocs.io/en/latest/
https://github.com/galaxyproject/ephemeris
https://docs.galaxyproject.org/en/master/admin/conda_faq.html

CHAPTER 12

Submit yout flavour

Note: To follow this procedure basic knowledge of Git is needed. If you feel unsure you can contact us using our
support mail address (laniakea.helpdesk@gmail.com) and we will be happy to assist you in creating your flavour.

New flavours can be easily added to Laniakea through a Pull Request on our GitHub page.

In this step will be described how to make a Pull Request to the Laniakea GitHub repository to create a new flaovur.

1. Fork the Laniakea GitHub Galaxy flavours repository.

2. Clone the forked repository:

git clone https://github.com/<user-name>/Galaxy-flavours.git

3. Create a new directory with the name of your flavour. For example, galaxy-testing in this case.

mkdir galaxy-testing

4. To create a new Galaxy flavour, a tool list file, written in YAML syntax, has to be provided. The examples
directory provides some samples.

Move in the flavour directory:

cd galaxy-testing

Edit your tool list file with your favourite text editor adding the following default configuration lines:

api_key: admin
galaxy_instance: http://localhost:8080
install_resolver_dependencies: true
install_tool_dependencies: false

43

mailto:laniakea.helpdesk@gmail.com
https://github.com/Laniakea-elixir-it/Galaxy-flavours
https://github.com/Laniakea-elixir-it/Galaxy-flavours.git

Laniakea Documentation, Release 2.0.0

Then, add your tool list. For each tool to install, name, owner and tool_panel_section_label, which
labels the tools section in the right Galaxy panel, have to be provided:

tools:

- name: fastqc
owner: devteam
tool_panel_section_label: "tools"

- name: bowtie2
owner: devteam
tool_panel_section_label: "tools"

- name: bowtie_wrappers
owner: devteam
tool_panel_section_label: "tools"

- name: sam_to_bam
owner: devteam
tool_panel_section_label: "tools"

- name: bam_to_sam
owner: devteam
tool_panel_section_label: "tools"

In this case the resulting Galaxy tools section will be:

5. If you don’t need to add one or more workflows to your flavor, move to the next step.

Create a new directory in your flavour directory:

mkdir workflow

For example, in our galaxy-testing flavour we have:

~/Galaxy-flavours/galaxy-testing$ ls

tool-list.yaml workflow

Navigate in this directory and copy here your Galaxy workflows with .ga extension.

6. We are now ready to create a Pull Request. Add your files to your GitHub repository. For example, for our
testing flavour:

cd galaxy-testing

$ git add tool-list.yaml workflow/Galaxy-Workflow-test.ga

$ git commit -m "add galaxy-testing flavour"
[master 2bc262d] add galaxy-testing flavour
2 files changed, 30 insertions(+)
create mode 100644 galaxy-testing/tool-list.yaml
create mode 100644 galaxy-testing/workflow/Galaxy-Workflow-test.ga

$ git push
Username for 'https://github.com': mtangaro
Password for 'https://mtangaro@github.com':
Counting objects: 3, done.
Compressing objects: 100% (3/3), done.

(continues on next page)

44 Chapter 12. Submit yout flavour

Laniakea Documentation, Release 2.0.0

45

Laniakea Documentation, Release 2.0.0

(continued from previous page)

Writing objects: 100% (3/3), 356 bytes | 0 bytes/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote: Resolving deltas: 100% (1/1), completed with 1 local object.
To https://github.com/mtangaro/Galaxy-flavours.git

be92a03..2bc262d master -> master

7. Finally, from GitHub it is possible to create a Pull Request to the Laniakea repository:

We will review and test your flavour and enable it on Laniakea.

These changes must be merged to the main branch of the Galaxy flavours repository. The merge will be done once the
flavour has been enabled on Laniakea.

Warning: To enable this changes on Laniakea requires at least 1 working day.

12.1 Tool list configuration options

Keys Re-
quired

Default
value

Description

name yes This is is the name of the tool to install
owner yes Owner of the Tool Shed repository from where the tools is being installed
tool_panel_section_idyes, if

tool_panel_section_label
not speci-
fied

ID of the tool panel section where you want the tool to be installed. The section
ID can be found in Galaxy’s shed_tool_conf.xml config file. Note that
the specified section must exist in this file. Otherwise, the tool will be installed
outside any section.

tool_panel_section_labelyes, if
tool_panel_section_id
not speci-
fied

Display label of a tool panel section where you want the tool to be installed.
If it does not exist, this section will be created on the target Galaxy instance
(note that this is different than when using the ID). Multi-word labels need to
be placed in quotes. Each label will have a corresponding ID created; the ID
will be an all lowercase version of the label, with multiple words joined with
underscores (e.g., ‘BED tools’ -> ‘bed_tools’).

tool_shed_url https:/
/
toolshed.
g2.
bx.
psu.
edu)

The URL of the Tool Shed from where the tool should be installed.

revisions latest A list of revisions of the tool, all of which will attempt to be installed.
install_tool_dependenciesTrue True or False - whether to install tool dependencies or not.
install_repository_dependenciesTrue True or False - whether to install repo dependencies or not, using classic tool-

shed packages

12.2 Conda support

Conda is a package manager like apt-get, yum, pip, brew or guix and it is, currently, used as default dependency
resolver in Galaxy.

46 Chapter 12. Submit yout flavour

https://github.com/Laniakea-elixir-it/Galaxy-flavours.git

Laniakea Documentation, Release 2.0.0

12.2. Conda support 47

Laniakea Documentation, Release 2.0.0

48 Chapter 12. Submit yout flavour

Laniakea Documentation, Release 2.0.0

12.3 References

Galaxy flavors

Ephemeris

Ephemeris documentation

Conda for Galaxy tools dependencies

12.3. References 49

https://github.com/bgruening/docker-galaxy-stable#Extending-the-Docker-Image
https://ephemeris.readthedocs.io/en/latest/
https://github.com/galaxyproject/ephemeris
https://docs.galaxyproject.org/en/master/admin/conda_faq.html

Laniakea Documentation, Release 2.0.0

50 Chapter 12. Submit yout flavour

CHAPTER 13

Reference Data

Many Galaxy tools rely on the presence of reference data, such as alignment indexes or reference genome sequences,
to efficiently work. A complete set of Reference Data, able to work with most common tools for NGS analysis is
available for each Galaxy instance deployed.

The reference data are available for many species and shared among all the instances, avoiding unnecessary and costly
data duplication, exploiting a CernVM-FS (CVMFS) repository.

Laniakea automatically configures Galaxy to properly use them.

By default Laniakea exploits the usegalaxy.org reference data, but for specific needs, e.g. new tools, it is possible to
enable, using the Laniakea Dahsobard, different repositories:

Fig. 1: Reference data indexes available for bowite

51

https://cvmfs.readthedocs.io/en/stable/
https://galaxyproject.org/admin/reference-data-repo/#cvmfs-client-configuration

Laniakea Documentation, Release 2.0.0

13.1 data.galaxyproject.org

Description The usegalaxy.org CVMFS repository hosts more than 4 TB of reference data. There are
two primary directories in the reference data repository:

• /managed: Data generated with Galaxy Data Managers, organized by data table (index format),
then by genome build.

• /byhand: Data generated prior to the existence/use of Data Managers, manually curated.

Currently, the Laniakea instances are preconfigured to mount /byhand data. More information can
be found here.

For GDC Somatic Variant flavour (/user_documentation/galaxy/galaxy_gdc) Galaxy is configured
to use also an additional gdc_tool_data_table_conf.xml, which can be found here.

13.2 elixir-italy.covacs.refdata

Description This repository hosts specific reference data for CoVaCS pipeline, Laniakea configure the
CoVaCS flavours to consume these data.

Reference data cvmfs Details
cvmfs repository name elixir-italy.covacs.refdata
cvmfs server url 90.147.75.251
cvmfs config file elixir-italy.covacs.refdata.conf
cvmfs key file elixir-italy.covacs.refdata.pub
cvmfs proxy url DIRECT
galaxy tool data table tool-data-table.xml

13.3 elixir-italy.galaxy.refdata

Description This repository is recommended only for testing tools and is currently not available on the
Laniakea Dashboard. It is used for those tools need to ship reference data still not in the Galaxy
Official CVMFS.

Reference data cvmfs Details
cvmfs repository name elixir-italy.galaxy.refdata
cvmfs server url 90.147.102.186
cvmfs config file elixir-italy.galaxy.refdata.conf
cvmfs key file elixir-italy.galaxy.refdata.pub
cvmfs proxy url DIRECT
galaxy tool data table tool-data-table.xml

13.4 Supplementary information

13.4.1 ELIXIR-Italy CVMFS documentation

ELIXIR-Italy maintain two CVMFS repository, exploited by Laniakea.

52 Chapter 13. Reference Data

https://galaxyproject.org/admin/reference-data-repo/#cvmfs-client-configuration
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/data.galaxyproject.org/location/gdc_tool_data_table_conf.xml
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_config_files/elixir-italy.covacs.refdata.conf
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_keys/elixir-italy.covacs.refdata.pub
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.covacs.refdata/location/tool_data_table_conf.xml
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_config_files/elixir-italy.galaxy.refdata.conf
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/cvmfs_server_keys/elixir-italy.galaxy.refdata.pub
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.galaxy.refdata/location/tool_data_table_conf.xml

Laniakea Documentation, Release 2.0.0

CVMFS Flavours supported folder tree
elixir-
italy.covacs.refdata

galaxy CoVaCS tree struc-
ture

elixir-
italy.galaxy.refdata

galaxy Epigen, galaxy RNA-workbench, Galaxy GDC Somatic Variant
Calling

tree struc-
ture

A complete list of the reference data, with download link, is available here.

Default folders structure

The basic structure of the CVMFS repositories is the same. The repository directories are referred to the model
organism genome different assemblies:

• at10
• at9
• dm2
• dm3
• dm6
• hg18
• hg19
• hg38
• mm10
• mm8
• mm9
• sacCer1
• sacCer2
• sacCer3

Inside each assembly directory there is the genome.fa and the refseq gtf and gff downloaded from UCSC and
the tools indeces:

bwa

It has been created using the default command

$ bwa index -a bwtsw genome.fa

bowtie2

It has been created using the default command

$ bowtie2-build

bowtie

Created using the default command

$ bowtie-build

13.4. Supplementary information 53

https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.covacs.refdata/structure/tree_elixir-italy.covacs.refdata
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.covacs.refdata/structure/tree_elixir-italy.covacs.refdata
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.galaxy.refdata/structure/tree_elixir-italy.galaxy.refdata
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/elixir-italy.galaxy.refdata/structure/tree_elixir-italy.galaxy.refdata
https://docs.google.com/spreadsheets/d/1l0dbaVuT4qiXMGevrYtkRDvsNa052WT8WbBg_dFpqFM/edit?usp=sharing

Laniakea Documentation, Release 2.0.0

rsem

Created using the default command

$ rsem-prepare-reference --gtf (.gtf) --transcript-to-gene-map (table.txt) --bowtie (.
→˓fa) <assembly-name>

Additional folders

The two repositories hosts also spceific directories:

elixir-italy.covacs.refdata

annovar_db

Hosts the databases needed to perform CoVaCS pipeline downloaded from annovar repository using the anno-
tate_variation.pl perl script.

bed_file_covacs

Hosts the bed files needed to perform CoVacs pipeline, the same bed files were present in the CINECA implementation
of the CoVaCS pipeline.

location

Hosts the .loc file and the tool_data_table.xml file that will be used by galaxy CoVaCS flavours.

elixir-italy.galaxy.refdata

rRNAdatabase

Location of ribosomial RNA for sortmeRNA tool in galaxy RNA workbench flavour.

index_GATK_bundle

Location of genome indices for GATK toools for hg38 and hg19 assembly downloaded from GATK ftp bundle (https:
//software.broadinstitute.org/gatk/download/bundle).

location

Hosts the .loc file and the tool_data_table.xml file that will be used by galaxy RNA workbench, galaxy EPIGEN and
galaxy GDC Somatic Variant flavours

54 Chapter 13. Reference Data

https://software.broadinstitute.org/gatk/download/bundle
https://software.broadinstitute.org/gatk/download/bundle

Laniakea Documentation, Release 2.0.0

CVMFS server details

Since, cvmfs relies on OverlayFS or AUFS as default storage driver and Ubuntu 16.04 natively supports OverlayFS, it
is used as default choice to create and populate the cvmfs server.

A resign script is located in /usr/local/bin/Cvmfs-stratum0-resign and the corresponding weekly cron
job is set to /etc/cron.d/cvmfs_server_resign.

Log file is located in /var/log/Cvmfs-stratum0-resign.log.

13.4.2 Manage CVMFS

The CernVM-File System (conversely cvmfs) provides a scalable, reliable and low-maintenance software distribution
service. It was developed to assist High Energy Physics (HEP) collaborations to deploy software on the worldwide
distributed computing infrastructure used to run data processing applications.

CernVM-FS is implemented as a POSIX read-only file system in user space (a FUSE module). When initially
mounted, CVMFS does not consume any local disk space on the client (in this case, your Galaxy server). Instead, as
files are accessed, they are pulled from the server to a local disk-based cache of a configurable size. The reference data
Files and directories are hosted on standard web servers and mounted on /cvmfs directory

For example, listing the CVMFS elixir-italy.galaxy.refdata will results in:

$ ls -l /cvmfs/elixir-italy.galaxy.refdata/
total 60
drwxr-xr-x. 5 cvmfs cvmfs 4096 May 21 20:10 at10
drwxr-xr-x. 5 cvmfs cvmfs 4096 May 21 20:10 at9
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:10 dm2
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:11 dm3
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:15 hg18
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 18:36 hg19
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:18 hg38
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:22 mm10
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:22 mm8
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:25 mm9
-rw-r--r--. 1 cvmfs cvmfs 57 May 21 18:31 new_repository
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:25 sacCer1
drwxr-xr-x. 3 cvmfs cvmfs 4096 May 21 20:25 sacCer2
drwxr-xr-x. 7 cvmfs cvmfs 4096 May 21 20:25 sacCer3
-rw-r--r--. 1 cvmfs cvmfs 0 May 21 18:31 test-content

Note: The files hosted on a CVMFS repository are pulled from the server only if required, resulting in an empty
directory if the file are not required. For example, just listing the directory content will cause the files to be mounted.

Cvmfs client setup

CVMFS is installed by default on each Galaxy instance (CentOS 7 or Ubuntu 16.04). The public key is installed in /
etc/cvmfs/keys/. The /etc/cvmfs/default.local file is also already configured. The cvmfs_config
probe command mount the cvmfs volume to /cvmfs.

13.4. Supplementary information 55

Laniakea Documentation, Release 2.0.0

Description Command
check configuration cvmfs_config chksetup
mount volume cvmfs_config probe
umount volume cvmfs_config umount <refdata_repository_name>
reload repository cvmfs_config reload <refdata_repository_name>

Note: If mount fails, try to restart autofs with sudo service autofs restart.

Note: CVMFS commands require root privileges

The CVMFS repositoy can be mount also using the mount command to a specific mount point:

$ sudo mount -t cvmfs elixir-italy.galaxy.refdata /refdata/elixir-italy.galaxy.refdata
CernVM-FS: running with credentials 994:990
CernVM-FS: loading Fuse module... done

$ ls /refdata/elixir-italy.galaxy.refdata/
at10 at9 dm2 dm3 hg18 hg19 hg38 mm10 mm8 mm9 new_repository sacCer1
→˓sacCer2 sacCer3 test-content

Troubleshooting

After an instance reboot, CVMFS is automatically restarted. If this does not happen:

$ sudo cvmfs_config_probe
Probing /cvmfs/elixir-italy.galaxy.refdata... Failed!

A reload of the config could be able to fix the problem:

$ sudo cvmfs_config reload elixir-italy.galaxy.refdata
Connecting to CernVM-FS loader... done
Entering maintenance mode
Draining out kernel caches (60s)
Blocking new file system calls
Waiting for active file system calls
Saving inode tracker
Saving chunk tables
Saving inode generation
Saving open files counter
Unloading Fuse module
Re-Loading Fuse module
Restoring inode tracker... done
Restoring chunk tables... done
Restoring inode generation... done
Restoring open files counter... done
Releasing saved glue buffer
Releasing chunk tables
Releasing saved inode generation info
Releasing open files counter
Activating Fuse module

56 Chapter 13. Reference Data

https://wiki.chipp.ch/twiki/bin/view/CmsTier3/IssueCvmfsFailsToMount

Laniakea Documentation, Release 2.0.0

If the file system appears to be hanging, it might have been interrupted during a reload operation. Try to run sudo
cvmfs_config killall and then again sudo cvmfs_config_probe.

References

CernVM-FS

CVMFS documentation

Debugging CVMFS

13.4.3 References

Galaxyproject CVMFS

CernVM-FS

CVMFS documentation

Debugging CVMFS

13.4. Supplementary information 57

https://cernvm.cern.ch/portal/filesystem
http://cvmfs.ireadthedocs.io/en/stable/
https://cernvm.cern.ch/portal/filesystem/debugmount
https://training.galaxyproject.org/training-material/topics/admin/tutorials/cvmfs/tutorial.html
https://cernvm.cern.ch/portal/filesystem
http://cvmfs.ireadthedocs.io/en/stable/
https://cernvm.cern.ch/portal/filesystem/debugmount

Laniakea Documentation, Release 2.0.0

58 Chapter 13. Reference Data

CHAPTER 14

Galaxy production environment

Laniakea allows to setup and launch a virtual machine (VM) configured with the Operative System (CentOS 7 or
Ubuntu 16.04) and the auxiliary applications needed to support a Galaxy production environment such as PostgreSQL,
Nginx, uWSGI and Proftpd and to deploy the Galaxy platform itself. A common set of Reference data is available
through a CernVM-FS volume. Once deployed each Galaxy instance can be further customized with tools and refer-
ence data.

The Galaxy production environment is deployed according to Galaxy official documentation: https://docs.
galaxyproject.org/en/latest/admin/production.html.

14.1 OS support

CentOS 7 is our default distribution, Given its adherence to Standards and the length of of-
ficial support (CentOS-7 updates until June 30, 2024, https://wiki.centos.org/FAQ/General#
head-fe8a0be91ee3e7dea812e8694491e1dde5b75e6d). CentOS 7 and Ubuntu 16.04 are both supported.

Warning: Selinux is by default disabled on CentOS.

14.2 PostgresSQL

PostgreSQL packages coming from PostgreSQL official repository are installed:

Note: Current installed PostgreSQL is: PostgreSQL 9.6

Distribution Repository
Centos https://wiki.postgresql.org/wiki/YUM_Installation
Ubuntu https://wiki.postgresql.org/wiki/Apt

59

https://docs.galaxyproject.org/en/latest/admin/production.html
https://docs.galaxyproject.org/en/latest/admin/production.html
https://wiki.centos.org/FAQ/General#head-fe8a0be91ee3e7dea812e8694491e1dde5b75e6d
https://wiki.centos.org/FAQ/General#head-fe8a0be91ee3e7dea812e8694491e1dde5b75e6d
https://wiki.postgresql.org/wiki/YUM_Installation
https://wiki.postgresql.org/wiki/Apt

Laniakea Documentation, Release 2.0.0

On CentOS 7 the default pgdata directory is /var/lib/pgsql/9.6/data. The pg_hba.conf configuration
is modified allowing for password authentication. On CentOS we need to exclude CentOS base and updates repo for
PostgreSQL, otherwise dependencies might resolve to the postgresql supplied by the base repository.

On Ubuntu default pgdata directory is /var/lib/postgresql/9.6/main, while the configuration files are
stored in /etc/postgresql/9.6/main. There’s no need to modify the HBA configuration file since, by default,
it is allowing password authentication.

PostgreSQL start/stop/status in entrusted to Systemd on CentOS 7 and Ubuntu Xenial.

Distribution Command
CentOS 7 sudo systemctl start/stop/status postgres-9.6
Ubuntu Xenial sudo systemctl start/stop/status postgresql

14.2.1 Galaxy database configuration

Two different database are configured to track data and tool shed install data, e.g. allowing to bootstrap fresh Galaxy
instance with pretested installs. The database passwords are randomly generated and the passoword can be retrieved
in the galaxy.yml file.

Galaxy database is named galaxy and is configured in the galaxy.yml file:

database_connection = postgresql://galaxy:gtLxNnH7DpISmI5FXeeI@localhost:5432/galaxy

The shed install tool database is named galaxy_tools and is configured as:

install_database_connection = postgresql://galaxy:gtLxNnH7DpISmI5FXeeI@localhost:5432/
→˓galaxy_tools

60 Chapter 14. Galaxy production environment

Laniakea Documentation, Release 2.0.0

14.2.2 PostgresSQL troubleshooting

With the recents update (October 2019) the package python2-psycopg2 requires postgresql12-libs, resulting in a bro-
ken environment since the package is not available. We avoid this behaviour excluding python pytho2-psycopg2 update
in /etc/yum.conf file with the line exclude=python2-psycopg2. If you need to update it, just remove it
from the exclude line in /etc/yum.conf.

14.2.3 Docker configuration

On Docker container PostgreSQL cannot be managed through systemd/upstart, since there’s no init system on CentOS
and Ubuntu docker images. Therefore, the system is automatically configured to run postgresql using supervisord.

14.3 NGINX

To improve Galaxy performance, NGINX is used as web server. The official Galaxy nginx packages are used by
default (built in upload module support).

Distribution Repository
Centos https://depot.galaxyproject.org/yum/
Ubuntu ppa:galaxyproject/nginx

Moreover, on Ubuntu, we need to prevent NGINX to be updated by apt default packages. For this
purpose the pin priority of NGINX ppa packages is raised, by editing /etc/apt/preferences.d/
galaxyproject-nginx-pin-700 (more on apt pinning at: https://wiki.debian.org/AptPreferences).

NGINX is configured following the official Galaxy wiki: https://galaxyproject.org/admin/config/nginx-proxy/.

NGINX is started, usually using systemd:

$ sudo systemctl start nginx

14.3.1 NGINX options

NGINX options are listed here: https://www.nginx.com/resources/wiki/start/topics/tutorials/commandline/

To start/stop/status NGINX with systemd:

Dstribution Command
CentOS 7 sudo systemctl start/stop/status nginx
Ubuntu Xenial sudo systemctl start/stop/status nginx

14.3.2 NGINX troubleshooting

Running NGINX on CentOS through systemd could lead to this error in /var/log/nginx/error.log, which
can prevent Galaxy web page loading:

2017/08/24 08:22:32 [crit] 3320#0: *7 connect() to 127.0.0.1:4001 failed (13:
→˓Permission denied) while connecting to upstream, client: 192.167.91.214, server:
→˓localhost, request: "GET /galaxy HTTP/1.1", upstream: "uwsgi://127.0.0.1:4001",
→˓host: "90.147.102.159"

14.3. NGINX 61

https://depot.galaxyproject.org/yum/
https://wiki.debian.org/AptPreferences
https://galaxyproject.org/admin/config/nginx-proxy/
https://www.nginx.com/resources/wiki/start/topics/tutorials/commandline/

Laniakea Documentation, Release 2.0.0

This is related to SELinux policy on CentOS.

Warning: You should avoid to modify SELinux policy, since you can still use NGINX command line options.

Anyway, the problem is that selinux dany socket access. This results in a generic access denied error in NGINX’s log,
the important messages are actually in selinux’s audit log. To solve this issue, you can ran the following commands as
superuser.

show the new rules to be generated
grep nginx /var/log/audit/audit.log | audit2allow

show the full rules to be applied
grep nginx /var/log/audit/audit.log | audit2allow -m nginx

generate the rules to be applied
grep nginx /var/log/audit/audit.log | audit2allow -M nginx

apply the rules
semodule -i nginx.pp

Then restart NGINX.

You may need to generate the rules multiple times (likely four times to fix all policies), trying to access the site after
each pass, since the first selinux error might not be the only one that can be generated.

Further readings

NGINX documentation

StackOverflow post

Blog post

14.4 uWSGI

uWSGI (https://uwsgi-docs.readthedocs.io/en/latest) is used as interface between the web server (i.e. NGINX) and
the web application (i.e. Galaxy). Using uWSGI for production servers is recommended by the Galaxy team: https:
//galaxyproject.org/admin/config/performance/scaling/

uWSGI configuration is embedded in the galaxy.yml file ($HOME/galaxy/config/galaxy.yml), and
by default foresee 4 handler configuration. The number of processes (i.e. uWSGI workers) is set to
number_of_virtual_cpus - 1. This configuration should be fine for most uses. Nevertheless, there’s no
golden rule to define the workers number. It is up to the end-user to configure it dependig on your needs. The same
goes for the number of job handlers (4 by default).

uWSGI socket and stats server are, by default, listening on 127.0.0.1:4001 and 127.0.0.1:9191, respec-
tively. More on the uWSGI stats server here: http://uwsgi-docs.readthedocs.io/en/latest/StatsServer.html?highlight=
stats%20server.

enable-threads: true
socket: 127.0.0.1:4001
manage-script-name: True
stats: 127.0.0.1:9191
logto: /var/log/galaxy/uwsgi.log
no-orphans: true

62 Chapter 14. Galaxy production environment

https://www.nginx.com/blog/nginx-se-linux-changes-upgrading-rhel-6-6/
https://stackoverflow.com/questions/26334526/nginx-cant-access-a-uwsgi-unix-socket-on-centos-7
http://axilleas.me/en/blog/2013/selinux-policy-for-nginx-and-gitlab-unix-socket-in-fedora-19/
https://uwsgi-docs.readthedocs.io/en/latest
https://galaxyproject.org/admin/config/performance/scaling/
https://galaxyproject.org/admin/config/performance/scaling/
http://uwsgi-docs.readthedocs.io/en/latest/StatsServer.html?highlight=stats%20server
http://uwsgi-docs.readthedocs.io/en/latest/StatsServer.html?highlight=stats%20server

Laniakea Documentation, Release 2.0.0

14.5 Proftpd

To allow user to upload files (> 2GB) through FTP, Proftpd is installed and configured on each Galaxy server, according
to: https://galaxyproject.org/admin/config/upload-via-ftp/

Proftpd configuration file is located at /etc/proftdp.conf on CentOS and /etc/proftpd/proftpd.conf
on Ubuntu.

To grant a user access to read emails and passwords from the Galaxy database, a separate user is created for the FTP
server which has permission to SELECT from the galaxy_user table and nothing else.

Proftpd is listening on port 21. FTP protocol is not encrypted by default, thus any usernames and passwords are sent
over clear text to Galaxy.

14.5.1 How to use FTP through FileZilla

Open FileZilla and configure it with:

1. Host: Galaxy ip address (e.g. 90.147.170.108), without the /galaxy.

2. User name: your e-mail address on Galaxy.

3. Password: your password on Galaxy.

4. Port: 21

14.5. Proftpd 63

https://galaxyproject.org/admin/config/upload-via-ftp/

Laniakea Documentation, Release 2.0.0

14.5.2 How to use FTP through command line

To install FTP command line client, type sudo yum install ftp on CentOS or sudo apt-get install
ftp on Ubuntu.

To establish a connection with Glaxy Proftpd server, you can use your Galaxy username and password, in addition
to the server IP address you’re connecting to (e.g. 90.147.102.82). To open a connection in Terminal type the
following command, replacing the IP address with your server IP address:

$ ftp 90.147.102.82
Connected to 90.147.102.82.
220 ProFTPD 1.3.5e Server (galaxy ftp server) [::ffff:90.147.102.82]
Name (90.147.102.82:marco):

Then login with your Galaxy credentials, typing your Galaxy e-mail address and password:

$ ftp 90.147.102.82
Connected to 90.147.102.82.
220 ProFTPD 1.3.5e Server (galaxy ftp server) [::ffff:90.147.102.82]
Name (90.147.102.82:marco): ma.tangaro@gmail.com
331 Password required for ma.tangaro@gmail.com
Password:

To upload file to your Galaxy remote directory:

ftp> put Sc_IP.fastq
local: Sc_IP.fastq remote: Sc_IP.fastq
229 Entering Extended Passive Mode (|||30023|)
150 Opening BINARY mode data connection for Sc_IP.fastq
8% |******
→˓| 12544 KiB 23.84 KiB/s 1:31:23 ETA

Then you will find it on Galaxy:

Here’s a list of the basic commands that you can use with the FTP client.

64 Chapter 14. Galaxy production environment

Laniakea Documentation, Release 2.0.0

Command Description
ls ls the current directory on the remote machine.
cd to change directory on the remote machine.
pwd to find out the pathname of the current directory on the

remote machine.
delete to delete (remove) a file in the current remote directory

(same as rm in UNIX).
mkdir to make a new directory within the current remote di-

rectory.
rmdir to remove (delete) a directory in the current remote di-

rectory.
get to copy one file from the remote machine to the local

machine
get ABC DEF copies file ABC in the current remote
directory to (or on top of) a file named DEF in your
current local directory.
get ABC copies file ABC in the current remote direc-
tory to (or on top of) a file with the same name, ABC, in
your current local directory.

mget to copy multiple files from the remote machine to the
local machine; you are prompted for a y/n answer before
transferring each file.

put to copy one file from the local machine to the remote
machine.

mput to copy multiple files from the local machine to the re-
mote machine; you are prompted for a y/n answer before
transferring each file.

quit to exit the FTP environment (same as bye).

14.6 Supervisord

Supervisor is a process manager written in Python, which allows its users to monitor and control processes on UNIX-
like operating systems. It includes:

1. Supervisord daemon (privileged or unprivileged);

2. Supervisorctl command line interface;

3. INI config format;

4. [program:x] defines a program to control.

Supervisord requires root privileges to run.

Galaxy supervisord configuration is located here and here.

A configuration running the Galaxy server under uWSGI has been installed on /etc/supervisord.d/
galaxy_web.ini on CentOS, while it is located on /etc/supervisor/conf.d/galaxy.conf on Ubuntu.
The options stopasgroup = true and killasgroup = true ensure that the SIGINT signal, to shutdown
Galaxy, is propagated to all uWSGI child processes (i.e. to all uWSGI workers).

PYTHONPATH is not specified in this configuration since it was conflicting with Conda.

To manage Galaxy through supervisord:

14.6. Supervisord 65

https://docs.galaxyproject.org/en/master/admin/framework_dependencies.html?highlight=uwsgi#supervisor
https://galaxyproject.github.io/dagobah-training/2016-saltlakecity/002a-systemd-supervisor/systemd-supervisor.html#1

Laniakea Documentation, Release 2.0.0

Action Command
Start Galaxy sudo supervisorctl start galaxy:
Stop Galaxy sudo supervisorctl stop galaxy:
Restart Galaxy sudo supervisorctl restart galaxy:
Galaxy status sudo supervisorctl status galaxy:

$ supervisorctl help

default commands (type help <topic>):
=====================================
add clear fg open quit remove restart start stop update
avail exit maintail pid reload reread shutdown status tail version

$ sudo supervisorctl status galaxy:
galaxy:galaxy_web RUNNING pid 9030, uptime 2 days, 21:19:28
galaxy:handler0 RUNNING pid 9031, uptime 2 days, 21:19:28
galaxy:handler1 RUNNING pid 9041, uptime 2 days, 21:19:27
galaxy:handler2 RUNNING pid 9046, uptime 2 days, 21:19:26
galaxy:handler3 RUNNING pid 9055, uptime 2 days, 21:19:25

galaxy_web.ini file configuration:

[program:galaxy_web]
command = /home/galaxy/galaxy/.venv/bin/uwsgi --virtualenv /home/galaxy/
→˓galaxy/.venv --ini-paste /home/galaxy/galaxy/config/galaxy.ini --pidfile /var/log/
→˓galaxy/uwsgi.pid
directory = /home/galaxy/galaxy
umask = 022
autostart = true
autorestart = true
startsecs = 20
user = galaxy
environment = PATH="/home/galaxy/galaxy/.venv/bin:/usr/local/sbin:/usr/local/bin:/
→˓usr/sbin:/usr/bin:/sbin:/bin"
numprocs = 1
stopsignal = INT
startretries = 15
stopasgroup = true
killasgroup = true

[program:handler]
command = /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/
→˓galaxy/galaxy/config/galaxy.ini --server-name=handler%(process_num)s --log-file=/
→˓var/log/galaxy/handler%(process_num)s.log
directory = /home/galaxy/galaxy
process_name = handler%(process_num)s
numprocs = 4
umask = 022
autostart = true
autorestart = true
startsecs = 20
user = galaxy
startretries = 15

[group:galaxy]
programs = handler, galaxy_web

66 Chapter 14. Galaxy production environment

Laniakea Documentation, Release 2.0.0

Finally, a systemd script has been installed to start/stop Supervisord on /etc/systemd/system/
supervisord.service.

Action Command
Start sudo systemctl start supervisord.service
Stop sudo systemctl stop supervisord.service
Restart sudo systemctl restart supervisord.service
Status sudo systemctl status supervisord.service

$ sudo systemctl status supervisord.service
supervisord.service - Supervisor process control system for UNIX
Loaded: loaded (/etc/systemd/system/supervisord.service; disabled; vendor preset:

→˓disabled)
Active: active (running) since Sat 2017-08-12 08:48:33 UTC; 9s ago

Docs: http://supervisord.org
Main PID: 12204 (supervisord)
CGroup: /system.slice/supervisord.service

12204 /usr/bin/python /usr/bin/supervisord -n -c /etc/supervisord.conf
12207 /home/galaxy/galaxy/.venv/bin/uwsgi --virtualenv /home/galaxy/

→˓galaxy/.venv --ini-paste /home/galaxy/galaxy/config/galaxy.ini --pidfile /var/log/
→˓galaxy/uwsgi.pid

12208 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/
→˓galaxy/galaxy/config/galaxy.ini --server-name=handler0 --log-file=/var/log/galaxy/
→˓handler0.log

12209 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/
→˓galaxy/galaxy/config/galaxy.ini --server-name=handler1 --log-file=/var/log/galaxy/
→˓handler1.log

12210 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/
→˓galaxy/galaxy/config/galaxy.ini --server-name=handler2 --log-file=/var/log/galaxy/
→˓handler2.log

12211 /home/galaxy/galaxy/.venv/bin/python ./lib/galaxy/main.py -c /home/
→˓galaxy/galaxy/config/galaxy.ini --server-name=handler3 --log-file=/var/log/galaxy/
→˓handler3.log

Aug 12 08:48:33 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:33,805 CRIT
→˓Supervisor running as root (no user in config file)
Aug 12 08:48:33 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:33,805 WARN
→˓Included extra file "/etc/supervisord.d/galaxy_web.ini" during parsing
Aug 12 08:48:34 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:34,564 INFO
→˓RPC interface 'supervisor' initialized
Aug 12 08:48:34 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:34,564 CRIT
→˓Server 'unix_http_server' running without any HTTP authentication checking
Aug 12 08:48:34 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:34,565 INFO
→˓supervisord started with pid 12204
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,569 INFO
→˓spawned: 'galaxy_web' with pid 12207
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,573 INFO
→˓spawned: 'handler0' with pid 12208
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,576 INFO
→˓spawned: 'handler1' with pid 12209
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,581 INFO
→˓spawned: 'handler2' with pid 12210
Aug 12 08:48:35 galaxy-indigo-test supervisord[12204]: 2017-08-12 08:48:35,584 INFO
→˓spawned: 'handler3' with pid 12211

14.6. Supervisord 67

Laniakea Documentation, Release 2.0.0

14.7 Paths

User data are automatically stored to the “/export” directory, where an external (standard block storage) volume is
mounted.

All Galaxy job results are stored in this directory through galaxy.yml (galaxy.ini on galaxy < 18.01) configuration file.
For instance, the files directory is located:

Dataset files are stored in this directory.
file_path = /export/galaxy/database/files

while the job working directory is located:

Each job is given a unique empty directory as its current working directory.
This option defines in what parent directory those directories will be
created.
job_working_directory = /export/job_work_dir

Here is the list of Galaxy database path directories:

file_path = /export/galaxy/database/files
job_working_directory = /export/job_work_dir
new_file_path = /export/galaxy/database/tmp
template_cache_path = /export/galaxy/database/compiled_templates
citation_cache_data_dir = /export/galaxy/database/citations/data
citation_cache_lock_dir = /export/galaxy/database/citations/lock
whoosh_index_dir = /export/galaxy/database/whoosh_indexes
object_store_cache_path = /export/galaxy/database/object_store_cache
cluster_file_directory = /export/galaxy/database/pbs"
ftp_upload_dir = /export/galaxy/database/ftp

14.8 Enable Dockerized tools support in job_conf.xml

Different job_conf.xml configurations to exploit Dockerized tools can be here.

68 Chapter 14. Galaxy production environment

https://github.com/Laniakea-elixir-it/galaxy-resources/tree/master/job-configurations

CHAPTER 15

Galaxy Docker instance

The Laniakea Galaxy Docker application run a Galaxy Docker container inside a Centos 7 virtual machine. The
Official Galaxy Docker image is used. Currently, Laniakea supports the following Docker images:

• bgruening/galaxy-stable

• laniakeacloud/galaxy-covacs

• laniakeacloud/galaxy-gdc_somatic_variant

• bgruening/galaxy-rna-workbench

• laniakeacloud/galaxy-epigen

Note: Docker is configured to install all docker-engine files on /export, i.e. in the external storage.

15.1 Configuration files

The Docker configuration is slighty customized to make the Galaxy experience as similar as possible to the one on the
virtual machine.

• /etc/galaxy/.myenv.sh: file with the environment variables of the Docker container.

The customized variables are:

GALAXY_CONFIG_TOOL_DATA_TABLE_CONFIG_PATH: tool_data_table_conf.xml specific for the galaxy
flavour (see section Galaxy Flavours)

GALAXY_CONFIG_ADMIN_USERS: admin_user - the email selected in the laniakea dashboard

GALAXY_CONFIG_BRAND: Galaxy brand - the Instance description inserted in the laniakea dashboard

GALAXY_CONFIG_REQUIRE_LOGIN: true - avoid anonymous login.

GALAXY_CONFIG_ALLOW_USER_CREATION: true - allow user creation.

69

https://github.com/bgruening/docker-galaxy-stable
https://hub.docker.com/r/bgruening/galaxy-stable/tags
https://hub.docker.com/r/laniakeacloud/galaxy-covacs/tags
https://hub.docker.com/r/laniakeacloud/galaxy-gdc_somatic_variant/tags
https://hub.docker.com/r/bgruening/galaxy-rna-workbench/tags
https://hub.docker.com/r/laniakeacloud/galaxy-epigen/tags

Laniakea Documentation, Release 2.0.0

GALAXY_CONFIG_ALLOW_USER_IMPERSONATION: false - allow user impersonation.

GALAXY_CONFIG_NEW_USER_DATASET_ACCESS_ROLE_DEFAULT_PRIVATE: true - By default,
users’ data will be public, but setting this to True will cause it to be private.

GALAXY_CONDA_PREFIX: path to _conda prefix

GALAXY_CONFIG_CONDA_AUTO_INIT: true - conda auto-start

GALAXY_CONFIG_CONDA_AUTO_INSTALL: true - conda auto-install

• /etc/galaxy/tool_data_tables: directory with the tool_data_table_conf.xml files. A detailed de-
scription of Laniakea Galaxy flavours configuration for the reference data is here: Galaxy Flavours.

15.2 CVMFS configuration

The CVMFS repository selected in the Lanikaea dashboard is automatically configured and mounted inside the docker
directory /cvmfs. The corresponding configuration files are in the directory /etc/cvmfs.

15.3 Galaxy docker usage

15.3.1 Galaxy docker logs

SSH login in the virtual machine and type:

$ sudo docker logs --tail 200 -f galaxydocker

15.3.2 Enter in the Docker

In order to access to the Galaxy container, SSH login in the virtual machine and execute the following command:

$ sudo docker exec -it galaxydocker bash

15.3.3 Main directories in the Docker

Main Galaxy directories inside the Docker container are in /export:

• ftp: /export/ftp

• database: /export/database

• conda: /export/tool_deps/_conda

15.3.4 Check Galaxy configuration

In order to see the Galaxy Docker configuration, SSH login in the virtual machine and execute the following command:

$ sudo docker exec -it galaxydocker echo $GALAXY_CONFIG

70 Chapter 15. Galaxy Docker instance

Laniakea Documentation, Release 2.0.0

15.3.5 Data upload: FTP

Of course, the Galaxy Docker container allows user to upload data through FTP.

The procedure is similar to that described in the Proftpd section here:
/user_documentation/galaxy_production_environment/galaxy_production_environment_configuration.rst.

Moreover, you need to enable FTP Passive mode. Go to Settings..., then to FTP and flag Passive
(recommended), as shown in the following picture.

For those using the command line tool, you can enable/disable the passive mode by typing passive. First connect
to the server then type:

passive

and you will be in passive mode.

15.4 Galaxy Docker usage tutorial

15.4. Galaxy Docker usage tutorial 71

Laniakea Documentation, Release 2.0.0

72 Chapter 15. Galaxy Docker instance

CHAPTER 16

Cluster configuration

Laniakea provides the possibility to instantiate Galaxy with SLURM as Resource Manager and to customize the
number of virtual worker nodes and the workenr nodes and front-end server virtual hardware, e.g. vCPUs and memory.

Furthermore, automatic elasticity, provided using CLUES, enables dynamic cluster resources scaling, deploying and
powering on new working nodes depending on the workload of the cluster and powering-off them when no longer
needed. This provides an efficient use of the resources, making them available only when really needed.

Conda packages used to solve Galaxy tools dependencies are stored in /export/tool_deps/_conda directory
and shared between front and worker nodes.

16.1 job_conf.xml configuration

SLURM has been configured following the GalaxyProject tutorial.

In particular the number of tasks per nodes, i.e. the $GALAXY_SLOTS, is set at --ntasks=2 by default.

Moreover, to allow SLURM restart on elastic cluster, the number of connection retries has been set to 100.

<?xml version="1.0"?>
<job_conf>

<plugins>
<plugin id="local" type="runner" load="galaxy.jobs.runners.

→˓local:LocalJobRunner" workers="2"/>
<plugin id="slurm" type="runner" load="galaxy.jobs.runners.

→˓drmaa:DRMAAJobRunner" workers="100">
<param id="drmaa_library_path">/usr/local/lib/libdrmaa.so</param>
<param id="internalexception_retries">100</param>

</plugin>
</plugins>
<handlers default="handlers">

<handler id="handler0" tags="handlers"/>
<handler id="handler1" tags="handlers"/>
<handler id="handler2" tags="handlers"/>

(continues on next page)

73

slurm.schedmd.com
https://ec3.readthedocs.io/en/latest/arch.html#clues
https://galaxyproject.github.io/training-material/topics/admin/tutorials/connect-to-compute-cluster/tutorial.html

Laniakea Documentation, Release 2.0.0

(continued from previous page)

<handler id="handler3" tags="handlers"/>
</handlers>
<destinations default="slurm">

<destination id="slurm" runner="slurm" tags="mycluster" >
<param id="nativeSpecification">--nodes=1 --ntasks=2</param>

</destination>
<destination id="local" runner="local">

<param id="local_slots">2</param>
</destination>

</destinations>
<tools>

<tool id="upload1" destination="local"/>
</tools>
<limits>

<limit type="registered_user_concurrent_jobs">1</limit>
<limit type="unregistered_user_concurrent_jobs">0</limit>
<limit type="job_walltime">72:00:00</limit>
<limit type="output_size">268435456000</limit>

</limits>
</job_conf>

16.2 Shared file system

Current cluster configuration foresee two paths shared between front and worker nodes:

1. /home where Galaxy is installed.

2. /export where Galaxy input and output datasets are stored. Here is also mounted the external (encrypted)
storage volume, allowing to share it among worker nodes.

74 Chapter 16. Cluster configuration

Laniakea Documentation, Release 2.0.0

Note: The NFS exports configuration file is: /etc/exports

For example, listing the mount points in the worker nodes:

$ df -h
Filesystem Size Used Avail Use% Mounted on
devtmpfs 1.9G 0 1.9G 0% /dev
tmpfs 1.9G 0 1.9G 0% /dev/shm
tmpfs 1.9G 17M 1.9G 1% /run
tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup
/dev/vda1 20G 2.3G 18G 12% /
172.30.66.154:/home 20G 3.9G 17G 20% /home
172.30.66.154:/export 47G 537M 44G 2% /export
tmpfs 379M 0 379M 0% /run/user/1000
cvmfs2 4.0G 68K 4.0G 1% /cvmfs/data.galaxyproject.org

Note: The CVMFS repository is mounted on each node of the cluster.

16.3 Network configuration

The front node, hosting Galaxy and SLURM, is deployed with a public IP addess. Moreover, a private net is created
among front and worker nodes. The worker nodes are not exposed to the internet, but reachable only from the front
node, because they connected only with the private network.

16.4 Worker nodes SSH access

It is possible to SSH login to each deployed worker node from the front node, i.e. the Galaxy server.

The SSH public key is availeble at /var/tmp/.im/<deployment_uuid>/ansible_key. The
deployment_uuid is a random string which identifies your deployment and in the only directory in the path /
var/tmp/.im. For examples:

cd /var/tmp/.im/748ee382-ed9f-11e9-9ace-fa163eefe815/
(.venv) [root@slurmserver 748ee382-ed9f-11e9-9ace-fa163eefe815]# ll ansible_key
ansible_key ansible_key.pub

16.3. Network configuration 75

Laniakea Documentation, Release 2.0.0

The list of the worker nodes ip address is in the Output values tab of the deployment, as wn_ips:

Finally, you can connect to worker nodes as:

ssh -i ansible_key cloudadm@<wn_ip_address>

where wn_ip_address is the worker node ip address

16.5 Worker nodes deployment on elastic cluster

Warning: Each node takes 12 minutes or more to be instantiated. Therefore, the job needs the same time to start.
On the contrary, if the node is already deployed, the job will start immediately.

This is due to:

1. Virtual Machine configuration

2. CernVM-FS configuration

3. SLURM installation and configuration

During the worker node deployment and delete procedure the Dashboard will show the status
UPDATE_IN_PROGRESS:

When the worker node is up and running or once it is deleted the Dashboard will show the status
UPDATE_COMPLETE:

16.6 References

Connecting Galaxy to a compute cluster

76 Chapter 16. Cluster configuration

https://galaxyproject.github.io/training-material/topics/admin/tutorials/connect-to-compute-cluster/tutorial.html

Laniakea Documentation, Release 2.0.0

16.6. References 77

Laniakea Documentation, Release 2.0.0

SLURM main commands

Sbatch commands

78 Chapter 16. Cluster configuration

https://www.rc.fas.harvard.edu/resources/documentation/convenient-slurm-commands/
https://slurm.schedmd.com/sbatch.html

CHAPTER 17

Authentication

Currently, the authentication system relies on INDIGO-AAI.

To login into the portal, select the Sign in section on top-right:

17.1 Registration

It is needed to register to the portal at the first login. Register with your preferred username or using Google authenti-
cation.

Fill the registration form using a valid e-mail address:

79

Laniakea Documentation, Release 2.0.0

80 Chapter 17. Authentication

Laniakea Documentation, Release 2.0.0

and accept the usage policy to complete the registration:

A confirmation e-mail is the sent your e-mail address:

You don’t need to answer to this mail, just follow the instructions, going to the link in the e-mail.

Once confirmed, your request has to be approved by the site administrators. This usually does not require too much
time.

Once your request is approved, you will be notified by mail and asked to insert your password.

Finally at the first login you have to allow the Laniakea portal to acquire your login information:

17.1. Registration 81

Laniakea Documentation, Release 2.0.0

82 Chapter 17. Authentication

Laniakea Documentation, Release 2.0.0

17.1. Registration 83

Laniakea Documentation, Release 2.0.0

17.2 Login

To login into the portal, select the Sign in section on top-right:

Then insert your credentials or login using another authentication provider, you used during the registratrion procedure,
like Google.

Finally, you can access the dashboard and instantiate Galaxy:

84 Chapter 17. Authentication

Laniakea Documentation, Release 2.0.0

17.2. Login 85

Laniakea Documentation, Release 2.0.0

86 Chapter 17. Authentication

CHAPTER 18

Frequently Asked Questions

Laniakea FAQs.

18.1 How to manually recover Galaxy after VM reboot

galaxy_restart

18.2 I’m unable to create users from admin panel

galaxy_user_create

87

Laniakea Documentation, Release 2.0.0

88 Chapter 18. Frequently Asked Questions

CHAPTER 19

The encryption layer

While the adoption of a distributed environment for data analysis makes data difficult to be tracked and identified by a
malevolus attacker, full data anonymity and isolation is still not granted.

The user data privacy is granted through LUKS storage encryption as a service: data are isolated from any other
instance on the same platform and from the cloud service administrators. In the past version, users were required
to insert a password to encrypt/decrypt data directly on the virtual instance during its deployment, through SSH
connection.

In the second Laniakea release the encryption procedure has been completely re-worked and automated in order to
simplify the user experience: now the user can encrypt storage on-demand, using a strong random alphanumerical
passphrase, without having to interact with the Galaxy instance through SSH. This has been achieved integrating the
key management system Hashicorp Vault (vaultproject.io) to store encryption keys, which are shown in the Laniakea
Dashboard only if explicitly requested by the user.

Disk encryption ensures that files are stored on disk in an encrypted form: the files only become available to the
operating system and applications in readable when the volume is unlocked by a trusted user. The adopted block
device encryption method, operates below the filesystem layer and ensures that everything is written to the block
device (i.e. the external volume) is encrypted.

The encryption layer sits between the physical disk and the file system and Galaxy is unaware of storage encryption.
Galaxy exploits a specific mount point in order to store and retrieve files. Files are encrypted when stored to disk and
decrypted when read.

19.1 The encryption strategy

Device mapper is the Linux kernel driver for volume management and provides transparent encryption of devices
through the Linux kernel crypto API, using its device mapper crypt (dm-crypt) module. Dm-crypt is commonly used
through Cryptsetup [cryptsetup], a command line interface to dm-crypt, allowing user to setup a new encrypted block
device in /dev, specifying the encryption mode, the cipher and the key. Then the device can be formatted with a file
system (e.g. ext4), mounted like any other partition and used as persistent storage.

Cryptsetup supports different encryption modes, like plain dm-crypt [cryptsetup] and LUKS volumes [LUKS_web,
LUKS_spec] already included in the Linux kernel, but also Loop-AES [loopaes] and TrueCrypt/VeraCrypt [vera]

89

Laniakea Documentation, Release 2.0.0

requiring extra modules installation.

We restricted our choice to dm-crypt usage, which exploits Linux kernel built-in APIs, avoiding the installation of
any additional external package other than cryptsetup. In particular, the LUKS encryption grants better usability and
flexibility to end users without neglecting data security. Unlike others encryption modes, LUKS stores all dm-crypt
setup information in the partition header at the beginning of the block device itself, allowing for multiple passphrases
that can be changed and/or revoked anytime. It provides robustness against low-entropy passphrases attack using
salting and iterated PBKDF2 passphrase hashing.

Cryptsetup allows for different ciphers usage. A cipher consists of three parts: a block cipher, i.e. it is the encryption
algorithm, which operate on fixed-length blocks of data; a block cipher mode of operation, which describes how
to repeatedly apply a cipher single block operation to data larger than cipher block size and an Initialization Vector
(IV) generator, used to randomize the output of the encryption algorithm, ensuring that the same data are encrypted
differently with the same key.

LUKS default cipher is aes-xts-plain64, i.e. AES as block cipher, XTS as mode of operation and plain64 as IV
generator. The Advanced Encryption Standard (AES) [AES] is a symmetric-key algorithm, I.e. the same key is used
either to encrypt and decrypt data, applying several substitution and permutation rounds to plaintext block to produce
encrypted blocks. The Xor encrypt xor Tweakable block Cipher (XTS) mode of operation [XTS1, XTS2] is intended
specifically to encrypt data on a block-structured storage device, e.g. disk sectors. The mode works with AES as
underlying block cipher which is applied two times to each data chunk: the plain text block is combined with the
tweak value, i.e. the plain64 IV, encrypted with AES. Then the block is AES encrypted with the key. Finally, the result
is combined again with the tweak value before storing the cipher block.

These options represent the current standard on storage encryption and their modification is strongly discouraged,
unless user requires particular configurations. For this reason, even if the Laniakea encryption layer can in theory
accept user-defined configuration, e.g. different ciphers, we did not expose these options in the user-interface.

90 Chapter 19. The encryption layer

Laniakea Documentation, Release 2.0.0

19.2 Storage encryption workflow

When the storage encrpyptions is required by the user the following workflow is triggered:

1. All required software are installed, e.g. cryptsetup.

2. A strong alphanumerical passphrase is generated (100 characters long).

3. The storage is encrypted. Laniakea adopts, by default, xts-aes-plain64 cipher with 256 bit keys ans
sha256 hashing algorithm.

Defaults values

cipher_algorithm='aes-xts-plain64'
keysize='256'
hash_algorithm='sha256'
device='/dev/vdb'
cryptdev='crypt'
mountpoint='/export'
filesystem='ext4'

4. The passphrase is uploaded on Vault, allowing user to retrieve it through the Laniakea dashboard.

5. Once the LUKS partition is created, it is unlocked.

The unlocking process will map the partition to a new device name using the device mapper. This alerts the
kernel that device is actually an encrypted device and should be addressed through LUKS using the /dev/
mapper/<cryptdev_name> so as not to overwrite the encrypted data. cryptdev_name is random gen-
erated to avoid accidental overwriting.

6. The volume is mounted, by default, on /export, with standard ext4 filesystem and Galaxy is configured to
store here datasets.

19.3 File System Encryption Test

Test executed to ensure LUKS volume encryption.

1. Create two volumes, here named vol1, vol2.

2. Attach each one to the instance (here listed as /dev/vdd and /dev/vde) and mount them respectively to
/export and /export1.

$ df -h
Filesystem Size Used Avail Use% Mounted on
...
/dev/vdd 976M 2.6M 907M 1% /export
/dev/vde 976M 2.6M 907M 1% /export1

3. Encrypt /export, i.e. /dev/vdd using fast_luks (/export is the default value).

$ df -h
Filesystem Size Used Avail Use% Mounted on
...
/dev/vde 976M 2.6M 907M 1% /export1
/dev/mapper/jtedehex 990M 2.6M 921M 1% /export

Ensure that /export has the same permissions of the other two volumes.

19.2. Storage encryption workflow 91

Laniakea Documentation, Release 2.0.0

drwxr-xr-x. 3 centos centos 4096 Nov 9 10:27 export
drwxr-xr-x. 3 centos centos 4096 Nov 9 10:27 export1

4. Put the same file on both volumes:

$ echo "encryption test" > /export/test.txt
$ echo "encryption test" > /export1/test.txt

5. Umount all the volumes and luksClose the encrypted one:

$ sudo cryptsetup luksClose /dev/mapper/jtedehex

6. Create the volume binary image using dd:

sudo dd if=/dev/vdd of=/home/centos/vdd_out
2097152+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 21.809 s, 49.2 MB/s

$ sudo dd if=/dev/vde of=/home/centos/vde_out
2097152+0 records in
2097152+0 records out
1073741824 bytes (1.1 GB) copied, 21.3385 s, 50.3 MB/s

7. HexDump the binary image with xdd:

$ xxd vdd_out > vdd.txt

$ xxd vde_out > vde.txt

As output you should have:

$ ls -ltrh
-rw-r--r--. 1 root root 1.0G Nov 9 11:19 vdd_out
-rw-r--r--. 1 root root 1.0G Nov 9 11:22 vde_out
-rw-rw-r--. 1 centos centos 4.2G Nov 9 11:32 vdd.txt
-rw-rw-r--. 1 centos centos 4.2G Nov 9 11:36 vde.txt

8. Grep non-zero bytes and search for the test.txt file content encryption test:

$ grep -v "0000 0000 0000 0000 0000 0000 0000 0000" vde.txt > grep_vde.txt
$ grep "encryption test" grep_vde.txt
8081000: 656e 6372 7970 7469 6f6e 2074 6573 740a encryption test.

$ grep -v "0000 0000 0000 0000 0000 0000 0000 0000" vdd.txt > grep_vdd.txt
$ grep "encryption test" grep_vdd.txt
$

Note: It is possible to see the test.txt file content only on the un-encrypted volume.

Moreover, the output file grep_vde.txt is 73 kb while the encrypted one, grep_vdd.txt (138 MB), is very large:

-rw-rw-r--. 1 centos centos 73K Nov 9 11:46 grep_vde.txt
-rw-rw-r--. 1 centos centos 138M Nov 9 11:58 grep_vdd.txt

92 Chapter 19. The encryption layer

Laniakea Documentation, Release 2.0.0

We also tried to open the volume when active (LUKS volume opened and mounted, Galaxy running) in the Virtual
Machine, using the cloud controller (as administrator).

Test executed on the cloud controller:

rbd map volume-3bedc7bc-eaed-466f-9d55-f2c29b44a7b2 --pool volumes
/dev/rbd0

lsblk -f
NAME FSTYPE LABEL UUID MOUNTPOINT
sda
|-sda1 ext4 db06fc46-7231-4189-ba2b-0b0117049680 /boot
|-sda2
|-sda5 swap e5b98538-8337-4e25-8f82-f97f04258716 [SWAP]
`-sda6 LVM2_member n4SAgY-GRNy-4Fl2-ROoQ-rRIf-bdBP-QC1B6s

`-vg00-root ext4 1e3f1ff1-8677-4236-8cb4-07d5cad32441 /
rbd0 crypto_LUKS c4bee3b9-e0dc-438e-87ae-2a3e491081c0

mount /dev/rbd0 /mnt/
mount: unknown filesystem type ‘crypto_LUKS’

It is not possible to mount the volume without the user password.

19.4 Fast-luks script

The fast-luks bash script is responsible for Laniakea Storage encryption. It parse common cryptsetup parameters to
encrypt the volume. For this reason it checks for cryptsetup and dm-setup packages and it install cryptsetup, if not
installed.

The default encryption parameters are:

cipher_algorithm: aes-xts-plain64
keysize: 256
hash_algorithm: sha256
device: /dev/vdb
cryptdev: crypt [this is randomly generated]
mountpoint: /export
filesystem: ext4

From version v3.0.1 Hashicorp Vault support has been integrated. It exploits a Vault token with the right write
policy only, which can be used only one time and for a limited time duration (currently configured to expire after 12
hours), to store user secret passphrases. A temporary python virtual environment is created allowing fast-luks to store
secrets on vault and then it is deleted.

The fast-luks script is automatically downloaded in /home/galaxy/laniakea_utils/fast-luks.

Full documentation on fast-luks script is hosted here.

Note: The script requires superuser rights.

19.5 Luksctl: LUKS volumes management

Luksctl is a python script allowing to easily Open/Close and Check LUKS encrypted volumes, parsing dmsetup and
cryptsetup commands. It’s source code is located on Laniakea GitHub.

19.4. Fast-luks script 93

https://github.com/Laniakea-elixir-it/fast-luks
https://github.com/Laniakea-elixir-it/fast-luks
https://github.com/Laniakea-elixir-it/luksctl

Laniakea Documentation, Release 2.0.0

Note: The script requires superuser rights.

Module Action Description
luksctl open Open and mount the encrypted stor-

age
close Umount and close the encrypted

storage

status Show the encrypted storage status

19.5.1 Dependencies

Since the script is going to parse cryptsetup, dmsetup and mount/umount commands, all of them are required

cryptsetup
dmsetup

19.5.2 Open LUKS volumes

To open LUKS volume, call: luksctl open, which will require your LUKS decrypt password:

$ sudo luksctl open
Enter passphrase for /dev/disk/by-uuid/9bc8b7c6-dc7e-4aac-9cd7-8b7258facc75:
Name: ribqvkjj
State: ACTIVE
Read Ahead: 8192
Tables present: LIVE
Open count: 1
Event number: 0
Major, minor: 252, 1
Number of targets: 1
UUID: CRYPT-LUKS1-9bc8b7c6dc7e4aac9cd78b7258facc75-ribqvkjj

Encrypted volume: [OK]

19.5.3 Close LUKS volumes

To Close LUKS volume, call luksctl close:

$ sudo luksctl close
Encrypted volume umount: [OK]

19.5.4 LUKS volumes status

To check if LUKS volume is Open or not call luksctl status

94 Chapter 19. The encryption layer

Laniakea Documentation, Release 2.0.0

$ sudo luksctl status
Name: ribqvkjj
State: ACTIVE
Read Ahead: 8192
Tables present: LIVE
Open count: 1
Event number: 0
Major, minor: 252, 1
Number of targets: 1
UUID: CRYPT-LUKS1-9bc8b7c6dc7e4aac9cd78b7258facc75-ribqvkjj

Encrypted volume: [OK]

19.6 LUKSctl: APIs

A set of RESTFul APIs is distributed with LUKSctl. It is written using python Flask micro framework and Gunicorn.
It’s source code is located on Laniakea GitHub.

A systemd unit file is used for start/stop/restart the API.

Moudule Action Description
luksctl-api status Show status

stop Stop the API

start Start the API.

restart Restart the API.

Note: LUKSctl-api is configured to listen on 5000 port.

$ sudo systemctl status luksctl-api
luksctl-api.service - Gunicorn instance to serve luksctl api server
Loaded: loaded (/etc/systemd/system/luksctl-api.service; enabled; vendor preset:

→˓disabled)
Active: active (running) since Fri 2019-10-25 14:23:06 UTC; 1 day 17h ago

Main PID: 19972 (gunicorn)
CGroup: /system.slice/luksctl-api.service

19972 /home/luksctl_api/luksctl_api/venv/bin/python /home/luksctl_api/
→˓luksctl_api/venv/bin/gunicorn --workers 2...

19995 /home/luksctl_api/luksctl_api/venv/bin/python /home/luksctl_api/
→˓luksctl_api/venv/bin/gunicorn --workers 2...

19997 /home/luksctl_api/luksctl_api/venv/bin/python /home/luksctl_api/
→˓luksctl_api/venv/bin/gunicorn --workers 2...

Oct 25 14:23:06 slurmserver systemd[1]: Started Gunicorn instance to serve luksctl
→˓api server.

(continues on next page)

19.6. LUKSctl: APIs 95

https://github.com/Laniakea-elixir-it/luksctl_api

Laniakea Documentation, Release 2.0.0

(continued from previous page)

Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19972]
→˓[INFO] Starting gunicorn 19.9.0
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19972]
→˓[INFO] Listening at: https://0.0.0.0:...19972)
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19972]
→˓[INFO] Using worker: sync
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19995]
→˓[INFO] Booting worker with pid: 19995
Oct 25 14:23:07 slurmserver gunicorn[19972]: [2019-10-25 14:23:07 +0000] [19997]
→˓[INFO] Booting worker with pid: 19997
Oct 26 07:55:37 slurmserver sudo[24629]: luksctl_api : TTY=unknown ; PWD=/home/
→˓luksctl_api/luksctl_api ; USER=root ; C...status
Oct 27 07:48:04 slurmserver sudo[21947]: luksctl_api : TTY=unknown ; PWD=/home/
→˓luksctl_api/luksctl_api ; USER=root ; C...status
Hint: Some lines were ellipsized, use -l to show in full.

It used to connect the Laniakea Dashboard to the encrypted instances, allowing end-user to perform some actions, e.g.
to mount and enable the LUKS storage volume, without accessing the Virtual Machine with SSH.

Currently, supported APIs are:

19.6.1 Volume Status

A GET request is used to check the status of the encrypted volume and show it in the Dhasboard. If the volume is
open and mounted it return mounted, othrewise it return umounted. If the API is not available, an unavailable
status is showed.

Example request:

$ curl -k -i -X GET 'https://90.147.75.173:5000/luksctl_api/v1.0/status'
HTTP/1.1 200 OK
Server: gunicorn/19.9.0
Date: Sun, 27 Oct 2019 08:02:54 GMT
Connection: close
Content-Type: application/json
Content-Length: 27

{"volume_state":"mounted"}

19.6.2 Volume Open

A POST request can be used to open and mount the encrypted volume in case of VM reboot. To prevent unwanted
restart, the API check if the volume is already mounted. If yes it return mounted, otherwise it run luksctl open
command.

Example request:

curl -k -X POST 'https://<vm_ip_address>:5000/luksctl_api/v1.0/open' -H 'Content-
→˓Type: application/json' -d '{ "vault_url": vault_url, "vault_token": wrapping_read_
→˓token, "secret_root": vault_secrets_path, "secret_path": secret_path, "secret_key":
→˓user_key }'

96 Chapter 19. The encryption layer

Laniakea Documentation, Release 2.0.0

API configuration

To perform the LUKSctl API, Laniakea creates a luksctl_api user on the Virtual Machine, and install the LUKSctl
on its home directory. This user can only run the LUKS commands as super user, for security reasons. Finally, to
sercure API communications, a self signed SSL certificate is created and installed.

The LUSKctl API currently support both single VMs and Cluster. Moreover, if the encrypted volume is used to
host the Docker Engine files, it can be configured to correctly manage this scenario. This is managed using a json
configuration file config.json.

Note: Laniakea provides automaric configuration for LUKSctl APIs.

Single VM

Description This is the default API configuration.

config.json

{
"INFRASTRUCTURE_CONFIGURATION": "single_vm"

}

Docker

Description The Docker engine files are installed on the encrypted storage, so the Docker daemon needs
to be restarted after LUKS volume mount. If VIRTUALIZATION_TYPE is set at docker after
LUKS volume mount, the Docker daemon is restarted.

config.json

{
"INFRASTRUCTURE_CONFIGURATION": "single_vm",
"VIRTUALIZATION_TYPE": "docker"

}

Cluster

Current cluster configuration foresee a NFS between front and worker nodes. If the Front End and/or the Worker
Nodes are restarted, once the encrypted volume is opened and mounted, the NFS has to be restarted. If the cluster
support is enabled in the API configuration file, after LUKS volum mount, the API contacts each worker nodes, via
API, and restart the NFS module.

Front End configuration

Description To enable API cluster support the variable INFRASTRUCTURE_CONFIGURATION has to
be set at cluster on the front end and the worker nodes list has to be provided.

config.json

{
"INFRASTRUCTURE_CONFIGURATION": "cluster",
"WN_IPS": ["127.0.0.1"]

}

19.6. LUKSctl: APIs 97

Laniakea Documentation, Release 2.0.0

Worker Nodes(s) configuration

Description On each worker node, the API needs the list of the NFS shared directores. This list is
required to check if all directories have been properly mounted.

config.json

{
"NFS_MOUNTPOINT_LIST": ["/home","/export"]

}

19.7 Cryptsetup hints

The cryptsetup action to set up a new dm-crypt device in LUKS encryption mode is luksFormat:

cryptsetup -v --cipher aes-xts-plain64 --key-size 256 --hash sha 256 --iter-time 2000
→˓--use-urandom --verify-passphrase luksFormat crypt --batch-mode

where crypt is the new device located to /dev/mapper/crypt.

To open and mount to /export an encrypted device:

cryptsetup luksOpen /dev/vdb crypt

mount /dev/mapper/crypt /export

To show LUKS device info:

dmsetup info /dev/mapper/crypt

To umount and close an encrypted device:

umount /export

cryptsetup close crypt

To force LUKS volume removal:

dmsetup remove /dev/mapper/crypt

Note: Run as root.

19.7.1 Change LUKS password

LUKS provides 8 slots for passwords or key files. First, check, which of them are used:

cryptsetup luksDump /dev/<device> | grep Slot

where the output, for example, looks like:

98 Chapter 19. The encryption layer

Laniakea Documentation, Release 2.0.0

Key Slot 0: ENABLED
Key Slot 1: DISABLED
Key Slot 2: DISABLED
Key Slot 3: DISABLED
Key Slot 4: DISABLED
Key Slot 5: DISABLED
Key Slot 6: DISABLED
Key Slot 7: DISABLED

Then you can add, change or delete chosen keys:

cryptsetup luksAddKey /dev/<device> (/path/to/<additionalkeyfile>)

cryptsetup luksChangeKey /dev/<device> -S 6

As for deleting keys, you have 2 options:

1. delete any key that matches your entered password:

cryptsetup luksRemoveKey /dev/<device>

2. delete a key in specified slot:

cryptsetup luksKillSlot /dev/<device> 6

19.8 References

1. LUKS

2. Disk encryption archlinux wiki page

3. Dm-crypt archlinux wiki page

4. LUKS how-to

5. Original LUKS script (Credits to John Troon for the original script)

19.8. References 99

https://gitlab.com/cryptsetup/cryptsetup
https://wiki.archlinux.org/index.php/disk_encryption#Block_device_encryption_specific
https://wiki.archlinux.org/index.php/Dm-crypt/Device_encryption#Encryption_options_for_LUKS_mode
http://www.thegeekstuff.com/2016/03/cryptsetup-lukskey
https://github.com/JohnTroony/LUKS-OPs/blob/master/luks-ops.sh

Laniakea Documentation, Release 2.0.0

100 Chapter 19. The encryption layer

CHAPTER 20

Galaxyctl: Galaxy management

Galaxyctl is a python script collection used for Galaxy management, to properly check uWSGI Stats and to correctly
retrieve Galaxy and uWSGI workers status. It’s source code is located on Laniakea GitHub.

Note: Since the script parse supervisorctl or systemd commands, it needs to be run as superuser.

101

https://github.com/Laniakea-elixir-it/galaxyctl

Laniakea Documentation, Release 2.0.0

Moudule Action Description
galaxy status Show galaxy status

stop Stop Galaxy. --force check
uwsgi master process. If it is still
running, after galaxy stop, it is
killed.

start Start Galaxy. --force force
galaxy to start by restarting it.
--retry option allow to spec-
ify number of tentative retart (de-
fault 5). --timeout allow to
customize uWSGI stats server wait
time. These options are used during
galaxy instantiation and you should
not use them on production.

restart Restart Galaxy. --force force
galaxy to start by restarting it.
--retry option allow to spec-
ify number of tentative retart (de-
fault 5). --timeout allow to
customize uWSGI stats server wait
time. These options are used during
galaxy instantiation and you should
not use them on production.

startup This method is used only to run
galaxy for the first time and you
shoud not use it in production.
--retry option allow to specify
number of tentative retart (default
5). --timeout allow to customize
uWSGI stats server wait time.

20.1 Galaxyctl basic usage

The script requires superuser commands to be used. Its basic commands are:

Action Command
Start Galaxy sudo galaxyctl start galaxy
Stop Galaxy sudo galaxyctl stop galaxy
Restart Galaxy sudo galaxyctl restart galaxy
Check Galaxy Status sudo galaxyctl status galaxy

20.2 Logging

Logs are stored in /var/log/galaxy/galaxyctl.log file.

102 Chapter 20. Galaxyctl: Galaxy management

Laniakea Documentation, Release 2.0.0

20.3 Advanced options

20.3.1 stop

To stop galaxy:

sudo galaxyctl stop galaxy

The script check the uWSGI Stats server to retrieve workers PID and their status. If, after uWSGI stop, workers are still
up and running, they are killed, allowing Galaxy to correctly start next time. The --force options allow to kill uwsgi
master process if it is still alive after galaxy stop (in case of uwsgi FATAL error or ABNORMAL TERMINATION).
Please check galaxy logs before run --force option.

20.3.2 start

To start Galaxy:

sudo galaxyctl start galaxy

Once Galaxy started, galaxyctl waits and check the uWSGI Stats server. Since it is the last software loaded, this ensure
that Galaxy has correctly started. The script also check that at least 1 uWSGI worker has correctly started and it is
accepting requests.

If no workers are available you have to restart Galaxy. Galaxyctl is able to automatically restart galaxy if the option
--force is specified, restarting it until the workers are correctly loaded The number of retries is set, by default, to
5. It can be customized using --retry option, e.g. --retry 10. These options were not designed for production,
but are used only during VMs instantiation phase to ensure Galaxy can correctly start.

20.3.3 restart

To restart Galaxy:

sudo galaxyctl restart galaxy

The options --force, --timeout and --retry are available for restart command too.

20.3.4 Galaxy first start

Galaxy takes longer to start the first time. Since the uWSGI stats server is the last software component started,
the script waits to ensure that Galaxy has correctly started. Then uWSGI workers are checked to ensure Galaxy is
accepting requests. If not, uWSGI is restarted. Currently, before rise an error, the script try to restart galaxy 5 times,
while the waiting time is set to 600 seconds. The command used in /usr/local/bin/galaxy-startup script,
is

galaxyctl startup galaxy -c /home/galaxy/galaxy/galaxy.ini -t 600

20.4 Configuration file

Supervisord and systemd/upstart are supported to start/stop/restart/status Galaxy. The init system can be set using the
variables init_system: two values are, currently, allowed: supervisord and init

20.3. Advanced options 103

Laniakea Documentation, Release 2.0.0

init_system Explanation
supervi-
sord

Supervisord is current default, it is mandatory for docker container, since there’s no systemd on
docker images.

init CentOS 7 and Ubuntu 16.04 use systemd, while Ubuntu 14.04 is using upstart.

Through galaxyctl_libs.DetectGalaxyCommands method the script automatically retrieves the right com-
mand to be used and it is compatible with both CentOS 7 and Ubuntu 16.04.

If Supervisord is used to manage Galaxy (which is our default choice), configuration files have to be specified using
the variable supervisord_config_file On CentOS:

supervisord_conf_file = '/etc/supervisord.conf'

while on Ubuntu:

supervisord_conf_file = '/etc/supervisor/supervisord.conf'

Galaxyctl needs galaxy.yml to retrieve uWSGI stats server information, through the variable:

galaxy_config_file = '/home/galaxy/galaxy/config/galaxy.yml'

20.5 Features

20.5.1 Galaxyctl: libraries

Galaxyctl is a python script collection for Galaxy management (first start, stop/start/restart/status).

Note: Galaxyctl requires superuser privileges.

Note: Current version: v2.0.0

Script Description
galaxyctl_libs Python libraries for uWSGI socket and stats server management, LUKS volume and Onedata space

management.
galaxyctl Galaxy management script. It integrates Luksctl and Onedatactl commands.

Galaxyctl_libs is composed by several modules.

Dependencies

Galaxyctl_libs depends on uWSGI for Galaxy management (i.e. currently no run.sh support). Moreover lsof is
needed to check listening ports.

uwsgi

lsof

104 Chapter 20. Galaxyctl: Galaxy management

Laniakea Documentation, Release 2.0.0

DetectGalaxyCommands

Parse galaxy Stop/Start/Restart/Status commands. Currently it supports supervisord or systemd/upstart

UwsgiSocket

Get uWSGI socket from galaxy.ini config file (e.g. 127.0.0.1:4001) and using lsof return uWSGI master PID.

master_pid, stderr, status = UwsgiSocket(fname='/home/galaxy/galaxy/config/galaxy.ini
→˓').get_uwsgi_master_pid()

UwsgiStatsServer

Read uWSGI stats server json. The stats server is the last software which uWSGI run during galaxy start procedure.
When the stats server is ready, galaxy is ready to accept requests. Stats server address and port can be specified, but
the class is able to read galaxy.ini file to recover stats informations. Reading Stats json the class is able to detect if
uWSGI workers accept requests or not.

In-
puts

Description

server uWSGI stats server address, e.g. 127.0.0.1
port uUWSG stats server port, e.g. 9191
time-
out

Wait time, in seconds, for the Stats server start. If galaxy is starting, 300 seconds as timeout is ok, while
if galaxy is already running 5 seconds are enough.

fname Galaxy config file, e.g. /home/galaxy/galaxy/config/galaxy.ini

GetUwsgiStatsServer

To connect to running uWSGI stats server call:

stats = UwsgiStatsServer(timeout=300, fname='/home/galaxy/galaxy/config/galaxy.ini)
socket = stats.GetUwsgiStatsServer()

GetUwsgiStatsServer

To check if at least one uWSGI workers accept requests, call:

stats = UwsgiStatsServer(timeout=300, fname='/home/galaxy/galaxy/config/galaxy.ini)
status = stats.GetUwsgiStatsServer('/home/galaxy/galaxy/config/galaxy,ini')

GetBusyList

To get the list of busy uWSGI workers:

stats = UwsgiStatsServer(timeout=5, fname='/home/galaxy/galaxy/config/galaxy.ini)
busy_list = stats.GetBusyList()

20.5. Features 105

Laniakea Documentation, Release 2.0.0

20.5.2 Galaxyctl: APIs

A set of RESTFul APIs is distributed with Galaxyctl. It is written using python Flask micro framework and Gunicorn.

A systemd unit file is used for start/stop/restart the API.

Moudule Action Description
galaxyctl-api status Show status

stop Stop the API

start Start the API.

restart Restart the API.

Note: Galaxyct-api is configured to listen on 5001 port.

$ sudo systemctl status galaxyctl-api
galaxyctl-api.service - Gunicorn instance to serve luksctl api server
Loaded: loaded (/etc/systemd/system/galaxyctl-api.service; enabled; vendor preset:

→˓disabled)
Active: active (running) since Wed 2019-10-09 16:49:57 UTC; 2 weeks 2 days ago

Main PID: 15648 (gunicorn)
CGroup: /system.slice/galaxyctl-api.service

15648 /home/galaxy/.galaxyctl/api/venv/bin/python /home/galaxy/.
→˓galaxyctl/api/venv/bin/gunicorn --workers 2 --b...

15662 /home/galaxy/.galaxyctl/api/venv/bin/python /home/galaxy/.
→˓galaxyctl/api/venv/bin/gunicorn --workers 2 --b...

15663 /home/galaxy/.galaxyctl/api/venv/bin/python /home/galaxy/.
→˓galaxyctl/api/venv/bin/gunicorn --workers 2 --b...

Oct 09 16:49:57 vnode-0.localdomain systemd[1]: Started Gunicorn instance to serve
→˓luksctl api server.
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000]
→˓[15648] [INFO] Starting gunicorn 19.9.0
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000]
→˓[15648] [INFO] Listening at: http://0....5648)
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000]
→˓[15648] [INFO] Using worker: sync
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000]
→˓[15662] [INFO] Booting worker with pid: 15662
Oct 09 16:49:58 vnode-0.localdomain gunicorn[15648]: [2019-10-09 16:49:58 +0000]
→˓[15663] [INFO] Booting worker with pid: 15663
Hint: Some lines were ellipsized, use -l to show in full.

It used to connect the Laniakea Dashboard to the Galaxy instances, allowing end-user to perform some actions, e.g. to
restart Galaxy, without accessing the Virtual Machine with SSH.

Currently, supported APIs are:

106 Chapter 20. Galaxyctl: Galaxy management

Laniakea Documentation, Release 2.0.0

Restart Galaxy

A POST request is used to restart Galaxy if offline. To prevent unwanted restart, the API check if Galaxy is on line. If
yes it return on-line else it run the galaxy-startup script. Also NGINX is restarted.

Example request:

$ curl 'http://<galaxy_ip_address>:5001/galaxyctl_api/v1.0/galaxy-startup' -i -X POST
→˓-H 'Content-Type: application/json' -d '{"endpoint": "http://<galaxy_ip_address>/
→˓galaxy"}'

20.5. Features 107

Laniakea Documentation, Release 2.0.0

108 Chapter 20. Galaxyctl: Galaxy management

CHAPTER 21

Laniakea Ansible Roles

Ansible automates Galaxy installation and configuration using Ansible roles. These roles make extensive use of
Ansible Modules, which are the ones that do the actual work in ansible, they are what gets executed in each playbook
task. Furthermore, a python scripts collection for galaxy advanced configuration is used (run by ansible).

Note: All roles can be easily installed through ansible-galaxy.

21.1 indigo-dc.galaxycloud

Description Install Galaxy Production environment, i.e. Galaxy with all needed software, PostgreSQL,
NGINX, Proftpd and uWSGI. The role also installs Galaxyctl and its API for Galaxy management.

Installation

ansible-galaxy install indigo-dc.galaxycloud

Documentation https://github.com/indigo-dc/ansible-role-galaxycloud

21.2 indigo-dc.galaxycloud-os

Description This role provides storage encryption with aes-xts-plain64 algorithm using LUKS for
Galaxy instances. The role installs and run fast-luks for storage encryption, and LUKSctl and
LUKSctl APIs for storage management.

Installation

ansible-galaxy install indigo-dc.galaxycloud-os

Documentation https://github.com/indigo-dc/ansible-role-galaxycloud-os

109

https://github.com/Laniakea-elixir-it/galaxyctl
https://github.com/indigo-dc/ansible-role-galaxycloud
https://github.com/Laniakea-elixir-it/fast-luks
https://github.com/Laniakea-elixir-it/luksctl
https://github.com/Laniakea-elixir-it/luksctl_api
https://github.com/indigo-dc/ansible-role-galaxycloud-os

Laniakea Documentation, Release 2.0.0

21.3 indigo-dc.galaxycloud-tools

Description Automated installation of tools from a Tool Shed into Galaxy. The role use the path scheme
from the indigo-dc.galaxycloud role. It creates a virtual environment, install ephemeris and in-
voke the install script to tools into Galaxy. The script stop Galaxy (if running), start a local
Galaxy instance on http://localhost:8080 and install tools. The list of tools to install is provided
in files/tool_list.yaml file, hosted in the external repository. Workflows are also installed.

Installation

ansible-galaxy install indigo-dc.galaxycloud-tools

Documentation https://github.com/indigo-dc/ansible-role-galaxycloud-tools

21.4 indigo-dc.galaxycloud-refdata

Description The role provides reference data using the CernVM File System and the corresponding
Galaxy configuration.

Installation

ansible-galaxy install indigo-dc.galaxycloud-refdata

Documentation https://github.com/indigo-dc/ansible-role-galaxycloud-refdata

21.5 indigo-dc.galaxycloud-fastconfig

Description Ansible role for Galaxy fast configuration on Virtual Machines with Galaxy and tools al-
ready inside, created using indigo.dc-galaxycloud role. The documentation on Galaxy Express ser-
vices, which explotis this role, is: /admin_documentation/indigo_paas_deploy/galaxy_vm.

Installation

ansible-galaxy install indigo-dc.galaxycloud-fastconfig

Documentation https://github.com/indigo-dc/ansible-role-galaxycloud-fastconfig

21.6 indigo-dc.galaxycloud_docker

Description Run Galaxy Docker containers on a Centos7 (Ubuntu 16.04) virtual machine, creating
Galaxy administrator user and mounting specific Cern VM file system. The Docker engine is in-
stalled and stored with docker images on the external volume (/export).

Installation

ansible-galaxy install indigo-dc.galaxycloud_docker

Documentation https://github.com/indigo-dc/ansible-role-galaxycloud-docker

110 Chapter 21. Laniakea Ansible Roles

https://github.com/indigo-dc/ansible-role-galaxycloud
http://localhost:8080
https://github.com/indigo-dc/Galaxy-flavors-recipes
https://github.com/indigo-dc/ansible-role-galaxycloud-tools
https://github.com/indigo-dc/ansible-role-galaxycloud-refdata
https://github.com/indigo-dc/ansible-role-galaxycloud-fastconfig
https://github.com/indigo-dc/ansible-role-galaxycloud-docker

Laniakea Documentation, Release 2.0.0

21.7 indigo-dc.cvmfs-client

Description Ansible role to install CernVM-FS Client.

Installation

ansible-galaxy install indigo-dc.cvmfs-client

Documentation https://github.com/indigo-dc/ansible-role-cvmfs-client

21.8 indigo-dc.cvmfs-server

Description Ansible role to install CernVM FS Server.

Installation

ansible-galaxy install indigo-dc.cvmfs-server

Documentation https://github.com/indigo-dc/ansible-role-cvmfs-server

21.7. indigo-dc.cvmfs-client 111

https://github.com/indigo-dc/ansible-role-cvmfs-client
https://github.com/indigo-dc/ansible-role-cvmfs-server

Laniakea Documentation, Release 2.0.0

112 Chapter 21. Laniakea Ansible Roles

CHAPTER 22

TOSCA templates

The INDIGO PaaS Orchestrator is the key software component of the INDIGO PaaS layer: it receives deployment
requests from the user interface software layer and coordinates the deployment process over the IaaS platforms. The
Orchestrator accepts the deployment requests written using the TOSCA standard, allowing to deploy complex appli-
cation using small building blocks, named node types, which exploit Ansible to install and configure the end-user
applications or services, like Galaxy, on bare OS images. Therefore, to correctly orchestrate Galaxy deployment the
following component are needed:

• Ansible roles to automate software installation and configuration (see section Laniakea Ansible Roles)

• Custom types: define user configurable parameters, node requirements, call ansible playbooks.

• Artifact: define what to install and how to do it, through ansible role configuration.

• TOSCA template: the orchestrator interprets the TOSCA template and orchestrates the deployment.

Note: This section is not inteded to be a complete guide to TOSCA types, but aims to describes the solutions adopted
to deploy Galaxy in Laniakea.

113

https://www.indigo-datacloud.eu/paas-orchestrator
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
https://www.ansible.com/

Laniakea Documentation, Release 2.0.0

22.1 Custom types

22.1.1 GalaxyPortal

Galaxy portal installation and configuration is entrusted to the GalaxyPortal custom type.

tosca.nodes.indigo.GalaxyPortal:
derived_from: tosca.nodes.WebServer

It is composed by the following sections:

properties

Galaxy input parameters are listed in the properties section:

properties:
admin_email:
type: string
description: email of the admin user
default: admin@admin.com
required: false

admin_api_key:
type: string
description: key to access the API with admin role
default: not_very_secret_api_key
required: false

user:
type: string
description: username to launch the galaxy daemon
default: galaxy
required: false

install_path:
type: string
description: path to install the galaxy tool
default: /home/galaxy/galaxy
required: false

export_dir:
type: string
description: path to store galaxy data
default: /export
required: false

version:
type: string
description: galaxy version to install
default: master
required: false

instance_description:
type: string
description: galaxy instance description
default: "INDIGO Galaxy test"

instance_key_pub:
type: string
description: galaxy instance ssh public key
default: your_ssh_public_key

flavor:

(continues on next page)

114 Chapter 22. TOSCA templates

Laniakea Documentation, Release 2.0.0

(continued from previous page)

type: string
description: name of the Galaxy flavor
required: false
default: galaxy-no-tools

reference_data:
type: boolean
description: Install Reference data
default: true
required: false

Note: The export_dir property is able to set Galaxy storage location. On single VMs it is set to /export, while
on Cluster it has to be set to /home/export, allowing for data sharing.

requirements

The LRMS, e.g. local, torque, slurm, sge, condor, mesos, is specified in the requirements section:

requirements:
- lrms:

capability: tosca.capabilities.indigo.LRMS
node: tosca.nodes.indigo.LRMS.FrontEnd
relationship: tosca.relationships.HostedOn

artifacts

The needed Ansible roles, installed using ansible-galaxy, are listed in the artifacts section:

artifacts:
nfs_role:
file: indigo-dc.nfs
type: tosca.artifacts.AnsibleGalaxy.role

galaxy_role:
file: mtangaro.galaxycloud,master
type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with its input parameters:

interfaces:
Standard:
configure:

implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/
→˓artifacts/galaxy/galaxy_install.yml

inputs:
galaxy_install_path: { get_property: [SELF, install_path] }
galaxy_user: { get_property: [SELF, user] }
galaxy_admin: { get_property: [SELF, admin_email] }
galaxy_admin_api_key: { get_property: [SELF, admin_api_key] }
galaxy_lrms: { get_property: [SELF, lrms, type] }

(continues on next page)

22.1. Custom types 115

Laniakea Documentation, Release 2.0.0

(continued from previous page)

galaxy_version: { get_property: [SELF, version] }
galaxy_instance_description: { get_property: [SELF, instance_description] }
galaxy_instance_key_pub: { get_property: [SELF, instance_key_pub] }
export_dir: { get_property: [SELF, export_dir] }
galaxy_flavor: { get_property: [SELF, flavor] }
get_refdata: { get_property: [SELF, reference_data] }

The artifact, called in the implementation line, is located on github tosca-
types/artifacts/galaxy/galaxy_install.yml

- hosts: localhost

connection: local
roles:
- role: indigo-dc.galaxycloud

GALAXY_VERSION: "{{ galaxy_version }}"
GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
GALAXY_ADMIN_API_KEY: "{{ galaxy_admin_api_key }}"

22.1.2 GalaxyPortalAndStorage

GalaxyPortalAndStorage custom type inherits its properties from GalaxyPortal and extends its functionalities for the
storage encryption:

tosca.nodes.indigo.GalaxyPortalAndStorage:
derived_from: tosca.nodes.indigo.GalaxyPortal

properties

The inputs needed to enable the storage encryption and the Hashicorp Vault key management are:

properties:
storage_encryption:
type: boolean
description: Enable storage encryption using Vault to store secrets and LUKS to

→˓encrypt
default: false
required: true

vault_url:
type: string
description: Hashicorp Vault server url
default: vault_url
required: false

vault_wrapping_token:
type: string
description: Vault Wrapping token to write secret
default: not_a_valid_token
required: false

vault_secret_path:
type: string
description: Vault path to store secret
default: path_to_secret
required: false

(continues on next page)

116 Chapter 22. TOSCA templates

https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_install.yml
https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/artifacts/galaxy/galaxy_install.yml

Laniakea Documentation, Release 2.0.0

(continued from previous page)

vault_secret_key:
type: string
description: Vault secret key name
default: secret_key_name
required: false

wn_ips:
type: list
entry_schema:

type: string
description: List of IPs of the WNs
required: false
default: []

artifacts

Here the indigo-dc.galaxycloud-os is the ansible role entrusted of file system encryption:

artifacts:
nfs_role:
file: indigo-dc.nfs
type: tosca.artifacts.AnsibleGalaxy.role

galaxy_os_role:
file: indigo-dc.galaxycloud-os
type: tosca.artifacts.AnsibleGalaxy.role

galaxy_role:
file: mtangaro.galaxycloud
type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with its input parameters:

interfaces:
Standard:
configure:

implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/
→˓artifacts/galaxy/galaxy_os_install.yml

inputs:
storage_encryption: { get_property: [SELF, storage_encryption] }
vault_url: { get_property: [SELF, vault_url] }
vault_wrapping_token: { get_property: [SELF, vault_wrapping_token] }
vault_secret_path: { get_property: [SELF, vault_secret_path] }
vault_secret_key: { get_property: [SELF, vault_secret_key] }
wn_ips: { get_property: [SELF, wn_ips] }
galaxy_install_path: { get_property: [SELF, install_path] }
galaxy_user: { get_property: [SELF, user] }
galaxy_admin: { get_property: [SELF, admin_email] }
galaxy_admin_api_key: { get_property: [SELF, admin_api_key] }
galaxy_lrms: { get_property: [SELF, lrms, type] }
galaxy_version: { get_property: [SELF, version] }
galaxy_instance_description: { get_property: [SELF, instance_description] }
galaxy_instance_key_pub: { get_property: [SELF, instance_key_pub] }
export_dir: { get_property: [SELF, export_dir] }

(continues on next page)

22.1. Custom types 117

Laniakea Documentation, Release 2.0.0

(continued from previous page)

galaxy_flavor: { get_property: [SELF, flavor] }
get_refdata: { get_property: [SELF, reference_data] }

The artifact includes indigo-dc.galaxycloud-os and indigo-dc.galaxycloud call.

- hosts: localhost

connection: local
roles:
- role: indigo-dc.galaxycloud-os

GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"

- role: indigo-dc.galaxycloud
GALAXY_VERSION: "{{ galaxy_version }}"
GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
GALAXY_ADMIN_API_KEY: "{{ galaxy_admin_api_key }}"
enable_storage_advanced_options: true # true only with indigo-dc.galaxycloud-os

Note: The option enable_storage_advanced_options has to be set to true, leaving storage configuration
to indigo-dc.galaxycloud-os.

22.1.3 GalaxyShedTool

This custom type is used to install tools on Galaxy.

tosca.nodes.indigo.GalaxyShedTool:
derived_from: tosca.nodes.WebApplication

properties

The inputs needed to install tools on Galaxy are:

properties:
flavor:
type: string
description: name of the Galaxy flavor
required: true
default: galaxy-no-tools

admin_api_key:
type: string
description: key to access the API with admin role
default: not_very_secret_api_key
required: false

version:
type: string
description: galaxy version installed
default: master
required: false

reference_data:
type: boolean
description: Install Reference data

(continues on next page)

118 Chapter 22. TOSCA templates

Laniakea Documentation, Release 2.0.0

(continued from previous page)

default: true
required: false

requirements

This custom types requires to be run on a Host with Galaxy already installed before tools installation.

requirements:
- host:

capability: tosca.capabilities.Container
node: tosca.nodes.indigo.GalaxyPortal
relationship: tosca.relationships.HostedOn

Then the Indigo-dc.galaxy-tools role is installed:

artifacts:
galaxy_role:
file: indigo-dc.galaxy-tools,master
type: tosca.artifacts.AnsibleGalaxy.role

interfaces

Finally, ansible is called:

interfaces:
Standard:
configure:

implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/
→˓artifacts/galaxy/galaxy_tools_configure.yml

inputs:
galaxy_flavor: { get_property: [SELF, flavor] }
galaxy_admin_api_key: { get_property: [HOST, admin_api_key] }
galaxy_version: { get_property: [SELF, version] }
get_refdata: { get_property: [SELF, reference_data] }

to install tools:

- hosts: localhost

connection: local
roles:
- { role: indigo-dc.galaxycloud-tools, GALAXY_VERSION: '{{ galaxy_version }}',

→˓when: galaxy_flavor != 'galaxy-no-tools' }

22.1.4 GalaxyReferenceData

The ReferenceData custom type configure Galaxy to retrieve the reference data from a CernVM-FS repository.

tosca.nodes.indigo.GalaxyReferenceData:
derived_from: tosca.nodes.WebApplication

22.1. Custom types 119

Laniakea Documentation, Release 2.0.0

properties

The ReferenceData input parameters are:

properties:
reference_data:
type: boolean
description: Install Reference data
default: true
required: true

refdata_cvmfs_configuration:
type: string
description: Configure cvmfs or load preconfigured repository
default: 'cvmfs_preconfigured'
required: false

refdata_cvmfs_repository_name:
type: string
description: CernVM-FS repository name
default: 'elixir-italy.galaxy.refdata'
required: false

refdata_cvmfs_server_url:
type: string
description: CernVM-FS server, replica or stratum-zero
default: 'server_url'
required: false

refdata_cvmfs_key_file:
type: string
description: CernVM-FS public key
default: 'not_a_key'
required: false

refdata_cvmfs_proxy_url:
type: string
description: CernVM-FS proxy url
default: 'DIRECT'
required: false

refdata_cvmfs_proxy_port:
type: integer
description: CernVM-FS proxy port
default: 80
required: false

refdata_dir:
type: string
description: path to store galaxy reference data
default: /cvmfs
required: false

flavor:
type: string
description: name of the Galaxy flavor
required: true
default: galaxy-no-tools

If refdata_cvmfs_configuration is set to cvmfs all the parameters are required to setup the CVMFS repos-
itory.

On the contrary, if refdata_cvmfs_configuration is set to cvmfs_preconfigured only
refdata_cvmfs_repository_name, i.e. the name of the repository is needed, since all the needed
parameters are retrieved from GitHub.

120 Chapter 22. TOSCA templates

https://github.com/indigo-dc/Reference-data-galaxycloud-repository

Laniakea Documentation, Release 2.0.0

requirements

Also in this case, Galaxy is required to install and configure reference data:

requirements:
- host:

capability: tosca.capabilities.Container
node: tosca.nodes.indigo.GalaxyPortal
relationship: tosca.relationships.HostedOn

artifacts

The role is used to install cvmfs client.

artifacts:
cvmfs_role:
file: indigo-dc.cvmfs-client
type: tosca.artifacts.AnsibleGalaxy.role

galaxy_role:
file: indigo-dc.galaxycloud-refdata
type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with the paramteres:

interfaces:
Standard:
configure:

implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/
→˓artifacts/galaxy/galaxy_redfata_configure.yml

inputs:
get_refdata: { get_property: [SELF, reference_data] }
refdata_cvmfs_configuration: { get_property: [SELF, refdata_cvmfs_

→˓configuration] }
refdata_cvmfs_repository_name: { get_property: [SELF, refdata_cvmfs_

→˓repository_name] }
refdata_cvmfs_server_url: { get_property: [SELF, refdata_cvmfs_server_url] }
refdata_cvmfs_key_file: { get_property: [SELF, refdata_cvmfs_key_file] }
refdata_cvmfs_proxy_url: { get_property: [SELF, refdata_cvmfs_proxy_url] }
refdata_cvmfs_proxy_port: { get_property: [SELF, refdata_cvmfs_proxy_port] }
refdata_dir: { get_property: [SELF, refdata_dir] }
galaxy_flavor: { get_property: [SELF, flavor] }

The role download from the GitHub repository all needed information to mount the CVMFS repository:

- hosts: localhost

connection: local
pre_tasks:
- set_fact:

galaxy_flavor: 'galaxy-no-tools'
when: galaxy_flavor == 'galaxy-minimal'

- name: Get reference data cvmfs key for on-the-fly configuration
get_url:

(continues on next page)

22.1. Custom types 121

https://github.com/indigo-dc/Reference-data-galaxycloud-repository

Laniakea Documentation, Release 2.0.0

(continued from previous page)

url: 'https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-
→˓repository/master/cvmfs_server_keys/{{ refdata_cvmfs_key_file }}'

dest: '/tmp'
when: refdata_cvmfs_configuration == 'cvmfs'

- name: Get reference data cvmfs key for preconfigured repository
get_url:

url: 'https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-
→˓repository/master/cvmfs_server_keys/{{ refdata_cvmfs_repository_name }}.pub'

dest: '/tmp'
when: refdata_cvmfs_configuration == 'cvmfs_preconfigured'

- name: Get reference data cvmfs configuration for preconfigured repository
get_url:

url: 'https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-
→˓repository/master/cvmfs_server_config_files/{{ refdata_cvmfs_repository_name }}.conf
→˓'

dest: '/tmp'
when: refdata_cvmfs_configuration == 'cvmfs_preconfigured'

roles:
- role: indigo-dc.galaxycloud-refdata

22.1.5 GalaxyPortalDocker

The role to deploy the Galaxy Official Docker is derived again from the GalaxyPortalAndStorage, allowing to config-
ure the same options and to perform, also, the storage encryption.

tosca.nodes.indigo.GalaxyPortalDocker:
derived_from: tosca.nodes.indigo.GalaxyPortalAndStorage

properties

The reference data are automatically configured, using CVMFS. Therefore the repository name is needed between the
inputs.

properties:
refdata_cvmfs_repository_name:
type: string
description: CernVM-FS repository name
default: 'elixir-italy.galaxy.refdata'
required: false

artifacts

The Docker engine has to be installed, alongside with the role to configure the Docker and the storage encryption.

artifacts:
nfs_role:
file: indigo-dc.nfs
type: tosca.artifacts.AnsibleGalaxy.role

galaxy_os_role:
file: indigo-dc.galaxycloud-os
type: tosca.artifacts.AnsibleGalaxy.role

docker_role:

(continues on next page)

122 Chapter 22. TOSCA templates

Laniakea Documentation, Release 2.0.0

(continued from previous page)

file: indigo-dc.docker
type: tosca.artifacts.AnsibleGalaxy.role

galaxy_role_docker:
file: indigo-dc.galaxycloud_docker
type: tosca.artifacts.AnsibleGalaxy.role

interfaces

The Ansible role is called with the paramteres:

interfaces:
Standard:
configure:

implementation: https://raw.githubusercontent.com/indigo-dc/tosca-types/v3.0.1/
→˓artifacts/galaxy/galaxy_docker.yml

inputs:
storage_encryption: { get_property: [SELF, storage_encryption] }
vault_url: { get_property: [SELF, vault_url] }
vault_wrapping_token: { get_property: [SELF, vault_wrapping_token] }
vault_secret_path: { get_property: [SELF, vault_secret_path] }
vault_secret_key: { get_property: [SELF, vault_secret_key] }
galaxy_install_path: { get_property: [SELF, install_path] }
galaxy_user: { get_property: [SELF, user] }
galaxy_admin: { get_property: [SELF, admin_email] }
galaxy_admin_api_key: { get_property: [SELF, admin_api_key] }
galaxy_lrms: { get_property: [SELF, lrms, type] }
galaxy_version: { get_property: [SELF, version] }
galaxy_instance_description: { get_property: [SELF, instance_description] }
galaxy_instance_key_pub: { get_property: [SELF, instance_key_pub] }
export_dir: { get_property: [SELF, export_dir] }
galaxy_flavor: { get_property: [SELF, flavor] }
get_refdata: { get_property: [SELF, reference_data] }
refdata_cvmfs_repository_name: { get_property: [SELF, refdata_cvmfs_

→˓repository_name] }

Finally, the galaxycloud_docker ansible role download and run the Galaxy Docker image.

- hosts: localhost

connection: local
roles:
- role: indigo-dc.galaxycloud-os

GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
application_virtualization_type: 'docker'
enable_reboot_scripts: false
enable_customization_scripts: false

- role: indigo-dc.galaxycloud_docker
GALAXY_VERSION: "{{ galaxy_version }}"
GALAXY_ADMIN_EMAIL: "{{ galaxy_admin }}"
GALAXY_ADMIN_API_KEY: "{{ galaxy_admin_api_key }}"

22.1. Custom types 123

Laniakea Documentation, Release 2.0.0

22.2 Galaxy template

The orchetrator interprets the TOSCA template and orchestrate the Galaxy deployment on the virtual machine.

Galaxy template is located here.

Input parameters are needed for each custom type used in the template:

• Virtual hardware parameters:

number_cpus:
type: integer
description: number of cpus required for the instance
default: 1

memory_size:
type: string
description: ram memory required for the instance
default: 1 GB

storage_size:
type: string
description: storage memory required for the instance
default: 10 GB

• Galaxy input paramters:

admin_email:
type: string
description: email of the admin user
default: admin@admin.com

admin_api_key:
type: string
description: key to access the API with admin role
default: not_very_secret_api_key

user:
type: string
description: username to launch the galaxy daemon
default: galaxy

version:
type: string
description: galaxy version to install
default: master

instance_description:
type: string
description: galaxy instance description
default: "INDIGO Galaxy test"

instance_key_pub:
type: string
description: galaxy instance ssh public key
default: your_ssh_public_key

export_dir:
type: string
description: path to store galaxy data
default: /export

• Storage input parameters:

galaxy_storage_type:
type: string

(continues on next page)

124 Chapter 22. TOSCA templates

https://raw.githubusercontent.com/Laniakea-elixir-it/laniakea-dashboard-config/master/tosca-templates/galaxy.yaml

Laniakea Documentation, Release 2.0.0

(continued from previous page)

description: Storage type (Iaas Block Storage, Onedaata, Filesystem encryption)
default: "IaaS"

userdata_provider:
type: string
description: default OneProvider
default: "not_a_privder_url"

userdata_token:
type: string
description: Access token for onedata space
default: "not_a_token"

userdata_space:
type: string
description: Onedata space
default: "galaxy"

• Galaxy flavor input parameters:

flavor:
type: string
description: Galaxy flavor for tools installation
default: "galaxy-no-tools"

• Reference data input parameters, for all possible options (CernVM-FS, Onedata and download).

reference_data:
type: boolean
description: Install Reference data
default: true

refdata_dir:
type: string
description: path to store galaxy reference data
default: /refdata

refdata_repository_name:
type: string
description: Onedata space name, CernVM-FS repository name or subdirectory

→˓downaload name
default: 'elixir-italy.galaxy.refdata'

refdata_provider_type:
type: string
description: Select Reference data provider type (Onedata, CernVM-FS or

→˓download)
default: 'onedata'

refdata_provider:
type: string
description: Oneprovider for reference data
default: 'not_a_provider'

refdata_token:
type: string
description: Access token for reference data
default: 'not_a_token'

refdata_cvmfs_server_url:
type: string
description: CernVM-FS server, replica or stratum-zero
default: 'server_url'

refdata_cvmfs_repository_name:
type: string
description: Reference data CernVM-FS repository name

(continues on next page)

22.2. Galaxy template 125

Laniakea Documentation, Release 2.0.0

(continued from previous page)

default: 'not_a_cvmfs_repository_name'
refdata_cvmfs_key_file:
type: string
description: CernVM-FS public key
default: 'not_a_key'

refdata_cvmfs_proxy_url:
type: string
description: CernVM-FS proxy url
default: 'DIRECT'

refdata_cvmfs_proxy_port:
type: integer
description: CernVM-FS proxy port
default: 80

Input parameters are passed to the corresponding ansible roles, through custom type call:

galaxy:
type: tosca.nodes.indigo.GalaxyPortalAndStorage
properties:
os_storage: { get_input: galaxy_storage_type }
token: { get_input: userdata_token }
provider: { get_input: userdata_provider }
space: { get_input: userdata_space }
admin_email: { get_input: admin_email }
admin_api_key: { get_input: admin_api_key }
version: { get_input: version }
instance_description: { get_input: instance_description }
instance_key_pub: { get_input: instance_key_pub }
export_dir: { get_input: export_dir }

requirements:
- lrms: local_lrms

galaxy_tools:
type: tosca.nodes.indigo.GalaxyShedTool
properties:
flavor: { get_input: flavor }
admin_api_key: { get_input: admin_api_key }

requirements:
- host: galaxy

galaxy_refdata:
type: tosca.nodes.indigo.GalaxyReferenceData
properties:
reference_data: { get_input: reference_data }
refdata_dir: { get_input: refdata_dir }
flavor: { get_input: flavor }
refdata_repository_name: { get_input: refdata_repository_name }
refdata_provider_type: { get_input: refdata_provider_type }
refdata_provider: { get_input: refdata_provider }
refdata_token: { get_input: refdata_token }
refdata_cvmfs_server_url: { get_input: refdata_cvmfs_server_url }
refdata_cvmfs_repository_name: { get_input: refdata_cvmfs_repository_name }
refdata_cvmfs_key_file: { get_input: refdata_cvmfs_key_file }
refdata_cvmfs_proxy_url: { get_input: refdata_cvmfs_proxy_url }
refdata_cvmfs_proxy_port: { get_input: refdata_cvmfs_proxy_port }

requirements:
- host: galaxy

(continues on next page)

126 Chapter 22. TOSCA templates

Laniakea Documentation, Release 2.0.0

(continued from previous page)

- dependency: galaxy_tools

Note: Note that Reference data custom type needs Galaxy installed to the ost host: galaxy, but depends on
galaxy tools dependency: galaxy_tools since it has to check installed and missing tools.

Finally we have virtual hardware customization:

host:
properties:
num_cpus: { get_input: number_cpus }
mem_size: { get_input: memory_size }

Image selection:

os:
properties:
type: linux
distribution: centos
version: 7.2
image: indigodatacloudapps/galaxy

And Storage configuration, which takes the export_dir input for the mount point and storage_size input
allowing for storage size customization.

- local_storage:
capability is provided by Compute Node Type
node: my_block_storage
capability: tosca.capabilities.Attachment
relationship:

type: tosca.relationships.AttachesTo
properties:

location: { get_input: export_dir }
device: hdb

my_block_storage:
type: tosca.nodes.BlockStorage
properties:
size: { get_input: storage_size }

22.3 Galaxy cluster template

The ansible_galaxycloud role provides the possibility to instantiate Galaxy with SLURM as Resource Manager, just
setting the galaxy_lrms variable to slurm.

This allows to instantiate Galaxy with SLURM cluster exploiting INDIGO custom types and ansible roles using
INDIGO components:

• CLUES (INDIGO solution for automatic elasticity)

• Master node deployment with SLURM (ansible recipes + tosca types)

• Install Galaxy + SLURM support (already in our ansible role indigo-dc.galaxycloud)

• Worker node deployment

22.3. Galaxy cluster template 127

Laniakea Documentation, Release 2.0.0

• Galaxy customization for worker nodes

The related tosca template is located here.

The input parameters allow to customize the number of virtual nodes, nodes and master virtual hardware:

wn_num:
type: integer
description: Maximum number of WNs in the elastic cluster
default: 5
required: yes

fe_cpus:
type: integer
description: Numer of CPUs for the front-end node
default: 1
required: yes

fe_mem:
type: scalar-unit.size
description: Amount of Memory for the front-end node
default: 1 GB
required: yes

wn_cpus:
type: integer
description: Numer of CPUs for the WNs
default: 1
required: yes

wn_mem:
type: scalar-unit.size
description: Amount of Memory for the WNs
default: 1 GB
required: yes

Note: You can refere to Galaxy template section for galaxy input parameters.

The master node hosts Galaxy and Slurm controller:

elastic_cluster_front_end:
type: tosca.nodes.indigo.ElasticCluster
properties:
deployment_id: orchestrator_deployment_id
iam_access_token: iam_access_token
iam_clues_client_id: iam_clues_client_id
iam_clues_client_secret: iam_clues_client_secret

requirements:
- lrms: lrms_front_end
- wn: wn_node

galaxy_portal:
type: tosca.nodes.indigo.GalaxyPortal
properties:
admin_email: { get_input: admin_email }
admin_api_key: { get_input: admin_api_key }
version: { get_input: version }
instance_description: { get_input: instance_description }
instance_key_pub: { get_input: instance_key_pub }

requirements:
- lrms: lrms_front_end

(continues on next page)

128 Chapter 22. TOSCA templates

https://github.com/indigo-dc/tosca-types/blob/master/examples/galaxy_elastic_cluster.yaml

Laniakea Documentation, Release 2.0.0

(continued from previous page)

lrms_front_end:
type: tosca.nodes.indigo.LRMS.FrontEnd.Slurm
properties:
wn_ips: { get_attribute: [lrms_wn, private_address] }

requirements:
- host: lrms_server

lrms_server:
type: tosca.nodes.indigo.Compute
capabilities:
endpoint:

properties:
dns_name: slurmserver
network_name: PUBLIC
ports:
http_port:
protocol: tcp
source: 80

host:
properties:

num_cpus: { get_input: fe_cpus }
mem_size: { get_input: fe_mem }

os:
properties:
image: linux-ubuntu-14.04-vmi

Then the worker nodes configuration (OS and virtual hardware):

wn_node:
type: tosca.nodes.indigo.LRMS.WorkerNode.Slurm
properties:
front_end_ip: { get_attribute: [lrms_server, private_address, 0] }

capabilities:
wn:

properties:
max_instances: { get_input: wn_num }
min_instances: 0

requirements:
- host: lrms_wn

galaxy_wn:
type: tosca.nodes.indigo.GalaxyWN
requirements:
- host: lrms_wn

lrms_wn:
type: tosca.nodes.indigo.Compute
capabilities:
scalable:

properties:
count: 0

host:
properties:

num_cpus: { get_input: wn_cpus }
mem_size: { get_input: wn_mem }

os:
(continues on next page)

22.3. Galaxy cluster template 129

Laniakea Documentation, Release 2.0.0

(continued from previous page)

properties:
image: linux-ubuntu-14.04-vmi

Note: Note that to orchestrate Galaxy with SLURM we do not need new TOSCA custom types or ansible roles.
Everythings is already built in INDIGO.

130 Chapter 22. TOSCA templates

CHAPTER 23

Build CVMFS server for reference data

This section gives a quick overview of the steps needed to create a new cvmfs repository to share reference data and
activate it on the clients. The repository name used is elixir-italy.galaxy.refdata, but it can be replaced
with the appropriate name.

All script needed to deploy a Reference data CernVM-FS Stratum 0 are located here.

23.1 Create CernVM-FS Repository

The CernVM-FS (cvmfs) relies on OverlayFS or AUFS as default storage driver. Ubuntu 16.04 natively supports
OverlayFS, therefore it is used as default, to create and populate the cvmfs server.

1. Install cvmfs and cvmfs-server packages.

2. Ensure enough disk space in /var/spool/cvmfs (>50GiB).

3. For local storage: ensure enough disk space in /srv/cvmfs.

4. Create a repository with cvmfs_server mkfs.

Warning:

• /cvmfs is the repository mount point, containing read-only union file system mountpoints that become
writable during repository updates.

• /var/spool/cvmfs hosts the scratch area described here, thus might consume notable disk space during
repository updates. When you copy your files to /cvmfs/<your_repository_name>/, they are
stored in /var/spool/cvmfs, therefore you have ensure enough space to this directory.

• /srv/cvmfs is the central repository storage location. During the cvmfs_server publish proce-
dure, your files will be moved and stored here. Therefore you have to ensure enough space here, too. This
directory needs to have enough space to store all your cvmfs server contents.

131

https://github.com/indigo-dc/Reference-data-galaxycloud-repository

Laniakea Documentation, Release 2.0.0

Note: A complete set of reference data takes 100 GB. Our cvmfs server exploits two different volumes, one 100 GB
volume mounted on /var/spool/cvmfs and one 200 GB volume for /srv/cvmfs.

• To Create a new repository:

cvmfs_server mkfs -w http://<stratum_zero>/cvmfs/elixir-italy.galaxy.refdata -o
→˓cvmfs elixir-italy.galaxy.refdata'

Replace <stratum_zero> with your domain or ip address.

• Publish your contents to the cvfms stratum zero server:

cvmfs_server transaction elixir-italy.galaxy.refdata
touch /cvmfs/elixir-italy.galaxy-refdata/test-content
cvmfs_server publish elixir-italy.galaxy.refdata

• Periodically resign the repository (at least every 30 days):

cvmfs_server resign elixir-italy.galaxy.refdata

A resign script is located in /usr/local/bin/Cvmfs-stratum0-resign and the corresponding
weekly cron job is set to /etc/cron.d/cvmfs_server_resign.

Log file is located in /var/log/Cvmfs-stratum0-resign.log.

• Finally restart the apache2 daemon.

sudo systemctl restart apache2

The public key of the new repository is located in /etc/cvmfs/keys/elixir-italy.galaxy.refdata.
pub

23.2 Client configuration

• Add the public key of the new repository to /etc/cvmfs/keys/elixir-italy.galaxy.refdata.
pub

• Repository configuration:

$ cat /etc/cvmfs/config.d/elixir-italy.galaxy.refdata.conf
CVMFS_SERVER_URL=http://90.147.102.186/cvmfs/elixir-italy.galaxy.refdata
CVMFS_PUBLIC_KEY=/etc/cvmfs/keys/elixir-italy.galaxy.refdata.pub
CVMFS_HTTP_PROXY=DIRECT

23.3 Populate a CernVM-FS Repository (with reference data)

Content Publishing

1. cvmfs_server transaction <repository name>

2. Install content into /cvmfs/<repository name> (see Reference data download section)

3. cvmfs_server publish <repository name>

132 Chapter 23. Build CVMFS server for reference data

Laniakea Documentation, Release 2.0.0

Note: cvmfs_server publish command will take time to move your contents from /cvmfs to /srv/cvmfs.

23.4 Reference data download

Reference data are available on Openstack Swift for public download. The list of reference data download link is here

Furthermore, to automatically download our reference data set it is possible to use python script refdata_download.py.

The package python-pycurl is needed to satisfy refdata_download.py requirements: on Ubuntu sudo apt-get
install python-pycurl

23.4.1 Script usage

This script takes the yaml files as input located in Reference-data-galaxycloud-repository/lists/
directory.

Option Description
-i,
--input.

Input genome list in yaml format

-o,
--outdir

Destination directory. Default /refdata

-s, --space Subdirectory name (for cvmfs and onedata spaces). Default elixir-italy.galaxy.
refdata

/usr/bin/python refdata_download.py -i sacCer3-list.yml -o /refdata -s elixir-italy.
→˓galaxy.refdata

Available Reference data yaml file:

• at10-list.yml

• at9-list.yml

• dm2-list.yml

• dm3-list.yml

• hg18-list.yml

• hg19-list.yml

• hg38-list.yml

• mm10-list.yml

• mm8-list.yml

• mm9-list.yml

• sacCer1-list.yml

• sacCer2-list.yml

• sacCer3-list.yml

23.4. Reference data download 133

https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/lists/url_list.txt
https://raw.githubusercontent.com/indigo-dc/Reference-data-galaxycloud-repository/master/scripts/refdata_download.py

Laniakea Documentation, Release 2.0.0

It is possible to download automatically all reference data files using the bash script refdata_download.sh,
which parse the python script, using as input the list file Reference-data-galaxycloud-repository/
lists/list.txt

./refdata_download.sh list.txt

23.5 References

CernVM-FS stratum Zero documentation

Nikhef wiki

134 Chapter 23. Build CVMFS server for reference data

http://cvmfs.readthedocs.io/en/stable/cpt-repo.html
https://wiki.nikhef.nl/grid/Adding_a_new_cvmfs_repository

CHAPTER 24

Vault configuration

Hashicorp Vault is a tool for securely accessing “secrets” and is exploited on Laniakea to store and manage user
encryption passphrases.

A secret is everything you want to tightly control access to, such as encryption passphrases. Data stored on Vault
are encrypted with 256 bit AES (Advanced Encryption Standard) cipher in the Galois Counter Mode (GCM) with a
randomly generated nonce.

Laniakea by default exploits kv-v2 secrets engine to store secrets within the configured physical storage for Vault.

24.1 Vault main concepts

1. Paths: everything in Vault is path based: users are able to write their secrets on a specific path, depending on
their Identity.

2. Tokens are the core method for authentication within Vault. After the authentication on the Laniakea Dashboard,
tokens are dynamically generated based on user identity.

3. Policies provide a declarative way to grant or forbid access to certain path and operations, controlling what the
token holder is allowed to do within Vault.

A token generated with a specific policy allows to write/read/update a secret in a specific path.

24.2 Vault authentication and authorization flow

Laniakea exploits a set of four different policies for secrets management:

1. The first policy needed is named kv-2 and is used to issue new tokens and grant permissions on the Vault UI.

Manage tokens
path "auth/token/*" {
capabilities = ["create", "read", "update", "delete", "sudo"]

}
(continues on next page)

135

https://www.vaultproject.io/docs/secrets/kv/kv-v2.html

Laniakea Documentation, Release 2.0.0

(continued from previous page)

Grant permissions on user specific path
path "secrets/data/{{identity.entity.aliases.<jwt_auth_accessor>.name}}/*" {

capabilities = ["read"]
}

For Web UI usage
path "secrets/metadata" {
capabilities = ["list"]

}

2. The write only.hcl token is exploited by LUKS script on the Virtual machine during the encryption procedure
to store passphrases on Vault.

Grant permissions on user specific path
path "secrets/data/{{identity.entity.aliases.<jwt_auth_accessor>.name}}/*" {

capabilities = ["create"]
}

The ecryption script write the random generated passphrase on vault, in a path where only the user can access,
since it depends on its identity.

3. The Laniakea Dashboard can Read, if required by the user, after the authentication, the passphrase from Vault
using the read_only.hcl policy.

Grant permissions on user specific path
path "secrets/data/{{identity.entity.aliases.<jwt_auth_accessor>.name}}/*" {
capabilities = ["read"]

}

Users can read their passphrases through the dashboard after authenticating.

4. Finally, the Laniakea Dashboard Deletes the passphrase from Vault, once the deployment is deleted using the
delete_only.hcl policy.

Permanently remove all versions and metadata for a key
path "secrets/metadata/{{identity.entity.aliases.auth_jwt_9144d398.name}}/*" {

capabilities = ["delete"]
}

The passphrases are automatically deleted from Vault once the Galaxy instance is deleted.

136 Chapter 24. Vault configuration

Laniakea Documentation, Release 2.0.0

24.3 Vault passphrase storage flow

On the Dashboard:

1. The dashboard exploits the JWT token (from IAM) to get Vault token using the kv-2 policy. This token should
not be revoked until the write procedure is finished, otherwise also the children token are revoked.

2. The vault token is used to get a wrapping token :

• with write_only policy, i.e. the token can only write (not update) a new secret on vault.

• it can be used only one time.

• limited in time duration (currently configured to expire after 12 hours).

The wrapping token is sent to the VM, via TOSCA template, with the vault path where the secret has to
be stored. These information are sent to the VM, all needed to store a secret on vault using kv-v2:

• The path of the secret: secrets/<user_subject>/<deployment_uuid>. This allows to have user iden-
tity and deployment uuid dependent path for every secret

• wrapping token

• key name: the kv secret has key and its value. The value, i.e. the encryption passphrase, is automat-
ically filled by luks script (it is randomly generated).

On the Virtual machine:

1. The ansible role on the VM run the fast-luks script to encrypt storage.

2. The (alphanumerical) passphrase is randomly generated.

3. The wrapping token is unwrapped, thus obtaining the privileged token with write (only) permissions to the
secrets path.

4. The passphrase is written to secrets/<user_subject>/<deployment_uuid> path.

5. The token used to write the passphrase is revoked.

Finally, if required, the dashboard crate a read_only token to show the passphrase to the user.

24.4 Passphrase path on Vault

Each passphrase is stored on vault on /secrets path. Each one depends on

1. User subject (issued by IAM): a unique and never reassigned user identifier

#. Deployment uuid (issued by the Dashboard): a unique and never reassigned deployment identifier.

This procedure results to have a passphrase path on Vault unique per user and Galaxy deployment. Only the deploy-
ment owner can write and read this path.

24.3. Vault passphrase storage flow 137

https://learn.hashicorp.com/vault/secrets-management/sm-cubbyhole

Laniakea Documentation, Release 2.0.0

138 Chapter 24. Vault configuration

CHAPTER 25

Laniakea Dashboard

The Laniakea Dashboard is the new, redesigned and reimplemented, user interface of Laniakea, developed using:

• Flask web micro-framework;

• Jinja2 template engine;

• Bootstrap 4 toolkit.

Lighter and more flexible than the previous interface, it has been integrated with Hashicorp Vault for user secrets
management.

The Laniakea dashboard has, currently, two configuration files, in json format, which can be found in the /
etc/orchestrator-dashboard directory: the config.json for the dashboard configuration and the
vault-config.json specific for the Vault integretion configuration.

Moreover, the TOSCA templates for each Laniakea application, with the corresponding parameters and metadata file
can be found in /opt/laniakea-dashboard-config:

• /opt/laniakea-dashboard-config/tosca-templates: this directory collects the TOSCA tem-
plates of applications shown in the dashboard.

• /opt/laniakea-dashboard-config/tosca-parameters: this directory collects the parameters
files corresponding to the TOSCA templates.

• /opt/laniakea-dashboard-config/tosca-metadata: this directory collects the metadata files
corresponding to the TOSCA templates.

These paths can be configured in the config.json file.

Warning: The Laniakea configuration files and templates are automatically configured by the installation proce-
dure. Please modify them only if you know what you are doing!

139

Laniakea Documentation, Release 2.0.0

25.1 Configuration

25.1.1 Overview

Home view

The home page tiles show the available applications. The goal of each tile is to quickly display each application, with
its description and configuration button. Currently, the interface allows to pin three applications.

Deployments list

Each user can manage its instances. It is possible to view details, delete and access instances. Finally, using the menu
in the action column, It is also possible to view logs and the template used for each instance.

Advanced options

If advanced options are enabled in the Dashboard configuration file, a new Advanced dropdown menu becomes
available in the navbar,

showing available Service Level Agreement

and Dashboard settings.

Administration panel

For the Dashboard Administrator Users panel is available for advanced users management,

140 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

25.1. Configuration 141

Laniakea Documentation, Release 2.0.0

142 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

25.1. Configuration 143

Laniakea Documentation, Release 2.0.0

allowing to browse the Laniakea users,

user datails:

and user deployment list. The Deployment details can be inspected. The cloud icon in the last icon shows if the
deployment is conncted to the INDIGO PaaS Orchestrator or not.

25.1.2 Basic configuration

The dashboard configuration file is located at /etc/orchestrator-dashboard/config.json, to make con-
figuration changes.

{
"IAM_CLIENT_ID": "my_client_id",
"IAM_CLIENT_SECRET": "my_client_secret",
"IAM_BASE_URL": "https://iam-test.indigo-datacloud.eu",
"ORCHESTRATOR_URL": "https://indigo-paas.cloud.ba.infn.it/orchestrator",
"SLAM_URL": "https://indigo-slam.cloud.ba.infn.it:8443",
"CMDB_URL": "https://indigo-paas.cloud.ba.infn.it/cmdb",
"IM_URL": "https://indigo-paas.cloud.ba.infn.it/im",
"TOSCA_TEMPLATES_DIR": "/opt/tosca-templates",
"TOSCA_PARAMETERS_DIR": "/opt/tosca-parameters",
"TOSCA_METADATA_DIR": "/opt/tosca-metadata",
"CALLBACK_URL": "https://my-orchestrator-dashboard.com/callback",
"DB_HOST": "localhost",
"DB_USER": "my-user",
"DB_PASSWORD": "my-password",
"DB_NAME": "orchestrator_dashboard",
"DB_PORT": "3306",
"MAIL_SERVER": "your.smtp.server.com",
"MAIL_PORT": "25",
"MAIL_SENDER": "test@orchestrator.com",
"ADMINS": "['admin@foo.it','other_admin@test.it']",
"VAULT_URL": "https://my-vault-instance.com",
"SUPPORT_EMAIL": "support@example.com",
"EXTERNAL_LINKS": [{ "url": "https://indigo-paas.cloud.ba.infn.it/status-page",

→˓"menu_item_name": "Services status" }], (continues on next page)

144 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

25.1. Configuration 145

Laniakea Documentation, Release 2.0.0

(continued from previous page)

"ENABLE_ADVANCED_MENU": "no",
"LOG_LEVEL": "info

}

Configuration options

IAM_CLIENT_ID

Description: IAM client ID for the dashboard.

IAM_CLIENT_SECRET

Description: IAM client Secret for the dashaboard.

IAM_BASE_URL

Description: IAM url.

ORCHESTRATOR_URL

Description: Orchestrator url.

SLAM_URL

Description: SLAM url.

CMDB_URL

Description: CMDB url.

IM_URL

Description: IM url.

TOSCA_TEMPLATES_DIR

Description: Path of TOSCA tempaltes to be loaded.

Defaults: /opt/laniakea-dashboard-config/tosca-templates”,

TOSCA_PARAMETERS_DIR

Description: Path of TOSCA template parameters to create Dashboard configurable forms.

Defaults: /opt/laniakea-dashboard-config/tosca-parameters

146 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

TOSCA_METADATA_DIR

Description: Path of TOSCA template metadata with additional info (e.g. icon path).

Defaults: /opt/laniakea-dashboard-config/tosca-metadata

CALLBACK_URL

Description: Dahsboard url for callback. Configure it as <dashboard url>/callback

Defaults: https://my-orchestrator-dashboard.com/callback

DB_HOST

Description: Dataase host. Configure it with the IP address of the Database host (do not leave localhost).

Defaults: localhost

DB_USER

Description: MySQL database user.

Defaults: orchestrator

DB_PASSWORD

Description: MySQL database password.

DB_NAME

Description: MySQL database name:

Defaults: orchestrator_dashboard

DB_PORT

Description: MySQL database port.

Defaults: 3306

MAIL_SERVER

Description: Mail server address allowing Dahsboard notifications.

MAIL_PORT

Description: Mail server port.

Defaults: 25

25.1. Configuration 147

https://my-orchestrator-dashboard.com/callback

Laniakea Documentation, Release 2.0.0

MAIL_SENDER

Description: Mail sender of the notification mail.

Defaults: Laniakea@elixir-italy.org

ADMINS

Description: Dahsobard administrator users. Set this to a comma-separated list of valid Galaxy users (email
addresses). These users will have access to the Users section of the dashboard.

VAULT_URL

Description: Vault url. This option enable vault support on Laniakea.

SUPPORT_EMAIL

Description: Support email, displayed on 500 error page.

Defaults: laniakea.helpdesk@gmail.com

EXTERNAL_LINKS

Description: create menu with external links, giving the url and the menu item name.

ENABLE_ADVANCED_MENU

Description: if yes, show advanced options in the navbar and the configurator form.

LOG_LEVEL

Description: Set log level.

Defaults: info

25.1.3 Vault configuration

The Vault support can be enabled editing the /etc/orchestrator-dashboard/config.json file, inserting
the Vault url:

...
"VAULT_URL": "https://<vault_host>:<vault_port>"

Vault fine tuning can be done through the vault-config.json file at /etc/orchestrator-dashboard/
vault-config.json:

148 Chapter 25. Laniakea Dashboard

mailto:Laniakea@elixir-italy.org
mailto:laniakea.helpdesk@gmail.com

Laniakea Documentation, Release 2.0.0

{
"VAULT_BOUND_AUDIENCE": "orchestrator-dashboard",
"VAULT_SECRETS_PATH": "secrets",
"WRAPPING_TOKEN_TIME_DURATION": "1h",
"READ_POLICY": "read_only",
"READ_TOKEN_TIME_DURATION": "12h",
"READ_TOKEN_RENEWAL_TIME_DURATION": "12h",
"WRITE_POLICY": "write_only",
"WRITE_TOKEN_TIME_DURATION": "12h",
"WRITE_TOKEN_RENEWAL_TIME_DURATION": "12h",
"DELETE_POLICY": "delete_only",
"DELETE_TOKEN_TIME_DURATION": "12h",
"DELETE_TOKEN_RENEWAL_TIME_DURATION": "12h"

}

Configuration options

VAULT_BOUND_AUDIENCE

Description: Vault is configured to exploits Json Web Token (JWT) for authentication. The role created on Vault
(called laniakea) authorizes only JWT with the given subject (i.e. user identifier) and this audience claim and gives
it the policy. This parameter allows the dashboard to retrieve a token with the right bound audience to login on Vault.

Default: orchestrator-dashboard

VAULT_SECRETS_PATH

Description: path on Vault where users secrets are stored.

Default: secrets/

WRAPPING_TOKEN_TIME_DURATION

Description: time duration of the wrapping token sent to the encryption script to upload secrets on Vault.

Default: 1h (1 hour)

READ_POLICY

Description: Secrets reading policy name. This policy has to be configured on Vault with the right permissions to
read secrets.

Default: read_only

READ_TOKEN_TIME_DURATION

Description: time duration of the read token, to read secrets on vault

Default: 12h (12 hours)

25.1. Configuration 149

Laniakea Documentation, Release 2.0.0

READ_TOKEN_RENEWAL_TIME_DURATION

Description: renew time period of read token.

Default: 12h (12 hours)

WRITE_POLICY

Description: Secrets writing policy name: The correspondig policy has to be configured on Vault with the right
permissions to write secrets.

Default: write_only

WRITE_TOKEN_TIME_DURATION

Description: time duration of the write token, to write secrets on vault

Default: 12h (12 hours)

WRITE_TOKEN_RENEWAL_TIME_DURATION

Description: renew time period of write token.

Default: 12h (12 hours)

DELETE_POLICY

Description: Secrets deletion policy name. This policy has to be configured on Vault with the right permissions
to delete secrets.

Default: delete_only

DELETE_TOKEN_TIME_DURATION

Description: time duration of the delete token, to delete secrets on vault

Default: 12h (12 hours)

DELETE_TOKEN_RENEWAL_TIME_DURATION

Description: renew time period of delete token.

Default: 12h (12 hours)

25.1.4 Add new applications

The PaaS Layer accepts deployment requests in the form of TOSCA Templates (see section TOSCA templates): a
document (YAML syntax) describing the infrastructure to deploy, e.g. the virtual hardware and the software to be
installed and configured. Galaxy TOSCA tempaltes are installed during Laniakea installation procedure automaticall
on /opt/laniakea-dashboard-config/tosca-templates

150 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

To add new TOSCA applications copy your tosca template in /opt/laniakea-dashboard-config/
tosca-templates and restart the dashboard:

cp tosca_example.yml /opt/laniakea-dashboard-config/tosca-templates/

docker restart orchestrator-dashboard

New applications will be then desplayed in the All applications section of the dashboard home page.

The Dashboard parses the TOSCA document automatically and renders the user interface with user friendly forms.
This allows to extend Laniakea functionalities just adding new templates without any code modification.

For example, the input field in the TOSCA template to select the instance flavour in terms of vCPUs, RAM and disk
storage is:

instance_flavor:
type: string
description: instance flavor (num_cpu, memory, disk)
default: small

where the default value small corresponds to a VM with 1 CPU and 2 GB of RAM.

The user input field automatically rendered as text field on the dashboard, allowing the user to modify the flavour
modifying the value:

Note: The dashboard automatically renders all the entries in the input section of the tosca templates as text fields in
the tab Ìnput values, for user configuration.

TOSCA templates inputs and outputs name are arbitrary and can be customized. The dashboard support some key-
words to enable special features like the SSH key injection and Galaxy restart. Currently available keywords are listed
below.

25.1. Configuration 151

Laniakea Documentation, Release 2.0.0

Supported inputs

instance_key_pub: user SSH public key is available in the dashboard through the SSH keys page (see sec-
tion ../qs_key_pair). If configured, the public key is automatically assigned to a TOSCA template input value
with this name if the input form is left empty. Otherwise, the value inserted in the input form will be assigned to
instance_key_pub input.

Note: Lanaiakea exploits this feature to automatically set user public key on Galaxy instances.

admin_email: if present among the inputs, this field is automatically filled with user e-mail address.

Supported outputs

endpoint: if the endpoint output is present, it is displayed in the deployments page of the dashboard, in the endpoint
column as clickable url.

node_ip: if available among the output values of the single node Galaxy instance, it is consumed by the dashboard
as base url to contact the instance APIs to restart the encrypted storage and Galaxy if needed,

cluster_ip: if available among the output values of a Galaxy cluster, it is consumed by the dashboard as base url
to contact the instance APIs to restart the encrypted storage, the NFS between the nodes and Galaxy.

25.1.5 Application launcher forms customization

The dashboard automatically renders all the entries in the input section of the tosca templates as text fields, for user
configuration. Despite this allows to easily increase Laniakea applications, it may be necessary to make available to
users only some fields to be configured and only some options defined by the service provider.

For this reason we extended the TOSCA templates inputs to create configurable forms. This creates a flexible web
interface, allowing straightforward customisation of the user experience through human readable YAML configuration
files, which can be easily adapted adding new functionalities to the user interface (e.g. adding a dropdown menu, text
fields, toggles. . .) based on the Laniakea administrator requirements.

To enable configurable forms a parameter file, corresponding to the TOSCA template, is needed. To be automatically
parsed by the dashboard the file needs the same name of the TOSCA template file with the extention .parameters.
yaml. For example if the TOSCA template is named galaxy.yaml the corresponding parameters file has to
be named galaxy.parameters.yaml and has to be placed in /opt/laniakea-dashboard-config/
tosca-parameters.

Note: The parameters directory can be modified in the dahsboard configuration file config.json (see section
Basic configuration).

Once added the parameters file, the dashboard needs to be restart to make changes effective.

152 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

The dashboard reads the content of this directory and automatically associate to each TOSCA template the correspond-
ing parameters file, if existing.

Note: If the parameters file is available, only the inputs present within it will be shown on the dashboard user interface,
allowing to select which TOSCA template input to customize and show.

For example, referring again to the input field to configure the VM virtual hardware, named ìnstance_flavor,
we have the following TOSCA template input:

instance_flavor:
type: string
description: instance flavor (num_cpu, memory, disk)
default: small

Rendered as an input text field:

The value small, which corresponds to a VM with 1 CPU and 2 GB of RAM, will be displayed as default value in
an input text field, allowing the user to modify it and change the VM configuration.

This requires the user to know the hardware presets available on the infrastructure, their names and, above all, it would
allow them to choose any possible presets knowing their names.

It is possible to customize this input value inserting an entry with the same name in the YAML parameters file.

For the ìnstance_flavor input, for example, we will have as parameter file input:

instance_flavor:
display_name: "Instance flavour"
tag_type: "select"
description: "CPUs, memory size (RAM), root disk size"
constraints:
- { value: "medium", label: "Medium (2 cpu, 4 GB RAM, 20 GB dsk)" }
- { value: "large", label: "Large (4 cpu, 8 GB RAM, 20 GB dsk)" }
- { value: "xlarge", label: "xLarge (8 cpu, 16 GB RAM, 20 GB dsk)" }

tab: "Virtual hardware"

Which is rendered as a dropdown menu on the dashboard:

File structure

The YAML parameter file has two sections: tabs and ìnputs.

25.1. Configuration 153

Laniakea Documentation, Release 2.0.0

tabs

Description This section is optional, if set creates the listed tabs instead of the Input values one. It
is possible to display each input in the desired tab, using the option tab in the input section. If not
specified, all inputs will be displayed by default in the Ìnput values tab, as default behaviour.

Example

Set here the list of the tabs to be displayed
tabs: ["tab_1", "tab_2"]
...

inputs

Description The list of the inputs is mandatory. Each input must have the same name of the correspond-
ing TOSCA template input value, to be correctly associated.

Example

Set here the list of the tabs to be displayed
tabs: ["tab_1", "tab_2"]

Set here a new set of inputs to be displayed
inputs:

first_input:
display_name: "<name to be displayed>"
tag_type: "<specific tag type for this input>"
description: "<description to desplayed>"
tab: "tab_1"

another_input:
display_name: "<name to be displayed>"
tag_type: "<specific tag type for this input>"
description: "<description to desplayed>"
tab: "tab_2"

...

Input parameters options

Each entry in the YAML parameters file can be customized in order to simplify the user intercation with the UI.

154 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

The Laniakea dashboard supports the following options.

display_name

Description The name that will be displayed in the form.

Example

input_name: value
display_name: <name_to_be_displayed>
...

tag_type

Description Set the tag to be used in the form to generate dropdown menu, radio button. . . Currently,
the following tags are available: text, hidden, email, password, select, radio, ssh_pub_key_type.

More on the available tag types can be found in the section: Available tag types.

Example

input_name: value
display_name: <name_to_be_displayed>
tag_type: <selected_tag_type>
...

description

Description Override the descripion present in the tosca template input field.

Example

input_name: value
display_name: <name_to_be_displayed>
tag_type: <selected_tag_type>
description: <custom_description_of_the_input>
...

25.1. Configuration 155

Laniakea Documentation, Release 2.0.0

placeholder

Description The placeholder attribute specifies a short hint that describes the expected value of an
input field/text area. It is available for the following tag_types: text, email, password,
ssh_pub_key_type.

Example

input_name: value
display_name: <name_to_be_displayed>
tag_type: <selected_tag_type>
description: <custom_description_of_the_input>
placeholder: <custom_placeholder_of_the_input>
...

constraints

Description The constraint option is used to define the possible options to choose from. For instance, for
select tag type it is possible to specify the selectable values.

It is possible to configure a value attribute, which is the value assigned to the input after the selection,
and a label attribute to display.

Example

input_name: value
display_name: <name_to_be_displayed>
tag_type: <selected_tag_type>
description: <custom_description_of_the_input>
constraints:
- { value: "<value_attribute>", label: "<displayed_label>" }
- { value: "<value_attribute>", label: "<displayed_label>" }
- { value: "<value_attribute>", label: "<displayed_label>" }
...

...

required

Description When present it specifies that the input field must be mandatorly filled out before submitting
the form.

Example

input_name: value
display_name: <name_to_be_displayed>
tag_type: <selected_tag_type>
description: <custom_description_of_the_input>
constraints:
- { value: "<value_attribute>", label: "<displayed_label>" }
- { value: "<value_attribute>", label: "<displayed_label>" }
- { value: "<value_attribute>", label: "<displayed_label>" }
...

required: <yes_or_no>

156 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

tab

Description The tab where the input must be shown.

Example

input_name: value
display_name: <name_to_be_displayed>
tag_type: <selected_tag_type>
description: <custom_description_of_the_input>
constraints:
- { value: "<value_attribute>", label: "<displayed_label>" }
- { value: "<value_attribute>", label: "<displayed_label>" }
- { value: "<value_attribute>", label: "<displayed_label>" }
...

required: <yes_or_no>
tab: <custom_tab>

Available tag types

The Laniakea dashboard currently supports the following tag_types allowing to differentiate user interactions with the
UI.

text

Description Defines a one-line text input field.

Example

input_example:
display_name: "Text input example"
tag_type: "text"
description: "Input description"
default: "default_value"
tab: "tab_2"

hidden

Description Define an hidden input. The user will not see any entry in the configuration form. Despite
this, the dashboard will automatically assign a value to this input.

For example the token to write secrets to vault is assigned with this system, without the user noticing.

Warning: If defined in the tabs section, the tab field is requred.

Example

25.1. Configuration 157

Laniakea Documentation, Release 2.0.0

input_example:
tag_type: "hidden"
default: hidden_default_value
tab: "tab_1" # Hidden fields needs a tab, if tabs are defined.

email

Description The email tag defines a field for an e-mail address. The input value is automatically validated
to ensure it is a properly formatted e-mail address.

Example

email_input_example:
display_name: "user e-mail"
tag_type: "email"
description: "Type a valid e-mail address."
tab: "tab_1"
required: yes

password

Description Defines a password field, i.e. a text field with hidden input.

Example

password_input_example:
display_name: "Password input example"
tag_type: "password"
description: "Password description"
default: "default_value"
tab: "tab_1"

select

Description Create drop down list of options, which appears when clicking on form element and allows
the user to choose one of the options. The options are described using the constraint attribute.

Example

input_example:
display_name: "Dropdown menu example"
tag_type: "select"
description: "Dropdown menu description"

(continues on next page)

158 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

(continued from previous page)

constraints:
- { value: "value1", label: "Value 1" }
- { value: "value2", label: "Value 2" }
- { value: "value3", label: "Value 3" }

tab: "tab_1"

toggle

Description Create a On/Off toggle. On values can be set ìn the constraints option.

Example

input_example:
display_name: "Enable an option"
tag_type: "toggle"
description: "Turn on this option"
constraints:
- { value: "True", label: "On" }

tab: "tab_1"

radio

Description Create a radio button to select one of many choices.

Example

input_example:
display_name: "Radio buttons example"
tag_type: "radio"
description: "Radio buttons description"
constraints:
- { value: "value1", label: "Value 1" }
- { value: "value2", label: "Value 2" }
- { value: "value3", label: "Value 3" }

tab: "tab_1"

25.1. Configuration 159

Laniakea Documentation, Release 2.0.0

ssh_pub_key_type

Description Special tag for ssh public key input. It is a text field to insert a SSH public key. If the
ssh public key is set in the corresponding page (see section ../qs_key_pair) a placeholder is shown
to remember te possibility to load the default key. If no ssh public key is set, nothing is displayed as
placeholder.

Warning: The input option has to be mandatorily named instance_key_pub in both
TOSCA template and parameter file.

Example

instance_key_pub:
display_name: "Insert instance SSH public key"
tag_type: "ssh_pub_key_type"
description: "Paste here your SSH public key or configure a default key

→˓"
placeholder: 'Leave blank this field to load your default SSH public

→˓key'
tab: "tab_1"
required: yes

Supported inputs

160 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

instance_flavor_fe

If an input with the same name is used in the TOSCA template, this variable does not trigger any spe-
cial action. If not, the correspondig menu accepts couples of number of CPUs and RAM size in the form
of python dictionary: {'<tosca_template_cpu_num>':'2', '<tosca_template_mem_size>':'4
GB'}. instance_flavor_fe is commonly used for front-end inputs.

tosca_template_cpu_num and tosca_template_mem_size are the corresponding inputs in the TOSCA
template. For example, if in the TOSCA template you have:

...

topology_template:
inputs:

fe_cpus:
type: integer
description: Numer of CPUs for the front-end node
default: 1
required: yes

fe_mem:
type: scalar-unit.size
description: Amount of Memory for the front-end node
default: 1 GB
required: yes

...

The corresponding entry in the parameter file will be:

instance_flavor_fe:
display_name: "Front End instance flavour"
tag_type: "select"
description: "CPUs, memory size (RAM), root disk size"
constraints:
- { value: "{'fe_cpus':'2', 'fe_mem':'4 GB'}", label: "Medium (2 cpu, 4 GB RAM,

→˓20 GB dsk)" }
- { value: "{'fe_cpus':'4', 'fe_mem':'8 GB'}", label: "Large (4 cpu, 8 GB RAM, 20

→˓GB dsk)" }
- { value: "{'fe_cpus':'8', 'fe_mem':'16 GB'}", label: "xLarge (8 cpu, 16 GB RAM,

→˓20 GB dsk)" }

instance_flavor_wn

If an input with the same name is used in the TOSCA template, this variable does not trigger any spe-
cial action. If not, the correspondig menu accepts couples of number of CPUs and RAM size in the form
of python dictionary: {'<tosca_template_cpu_num>':'2', '<tosca_template_mem_size>':'4
GB'}. instance_flavor_wn is commonly used for front-end inputs.

tosca_template_cpu_num and tosca_template_mem_size are the corresponding inputs in the TOSCA
template. For example, if in the TOSCA template you have:

...
topology_template:

inputs:
(continues on next page)

25.1. Configuration 161

Laniakea Documentation, Release 2.0.0

(continued from previous page)

wn_cpus:
type: integer
description: Numer of CPUs for the WNs
default: 1
required: yes

wn_mem:
type: scalar-unit.size
description: Amount of Memory for the WNs
default: 1 GB
required: yes

...

The corresponding entry in the parameter file will be:

instance_flavor_wn:
display_name: "Worker Node nstance flavour"
tag_type: "select"
description: "CPUs, memory size (RAM), root disk size"
constraints:
- { value: "{'wn_cpus':'2', 'wn_mem':'4 GB'}", label: "Medium (2 cpu, 4 GB RAM,

→˓20 GB dsk)" }
- { value: "{'wn_cpus':'4', 'wn_mem':'8 GB'}", label: "Large (4 cpu, 8 GB RAM, 20

→˓GB dsk)" }
- { value: "{'wn_cpus':'8', 'wn_mem':'16 GB'}", label: "xLarge (8 cpu, 16 GB RAM,

→˓20 GB dsk)" }

Note: For the full list of supported tag types, see section: Available tag types.

25.1.6 Application metadata

The Laniakea dashboard needs some additional information to further customize each application, e.g. the image to
show in the home page for each application.

To add metadata information, corresponding to the TOSCA template, a metadata file is needed. To be automat-
ically parsed by the dashboard the file needs the same name of the TOSCA template file with the extention .
metadata.yaml. For example if the TOSCA template is named galaxy.yaml the corresponding meatadata file

162 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

has to be named galaxy.metadata.yaml and has to be placed in /opt/laniakea-dashboard-config/
tosca-metadata.

Note: The metadata directory can be modified in the dahsboard configuration file config.json (see section Basic
configuration).

Once added the metadata file, the dashboard needs to be restart to make changes effective.

The dashboard reads the content of this directory and automatically associate to each TOSCA template the correspond-
ing metadata file, if existing.

Metadata file structure

The YAML metadata file has only one section: metadata. For example:

metadata:
icon: https://galaxyproject.org/images/galaxy-logos/galaxy_project_logo_square.png
display_name: "Galaxy"
virtualization_type: "Docker"
pinned: 'yes'
pin_order: 0

Supported options

icon

Documentation Define the image/icon loaded in the application tile. If no image URL is provided, the
Dashboard loads this icon.

Example

metadata:
icon: https://elixir-europe.org/system/files/elixir_node_italy.png
...

25.1. Configuration 163

https://cdn4.iconfinder.com/data/icons/mosaicon-04/512/websettings-512.png

Laniakea Documentation, Release 2.0.0

display_name

Documentation Define the name of the application shown in the Dashboard home page and in the con-
figuration form.

Example

metadata:
icon: https://elixir-europe.org/system/files/elixir_node_italy.png
display_name: "Custom application name"
...

ribbon

Documentation Enable the ribbon on bottom right corner of each tile if True.

Example

metadata:
icon: https://elixir-europe.org/system/files/elixir_node_italy.png
display_name: "Custom application name"
ribbon: true
ribbon_tag: "Test"
ribbon_color: "yellow"
...

164 Chapter 25. Laniakea Dashboard

Laniakea Documentation, Release 2.0.0

ribbon_tag

Documentation Define the name to be shown within the colored ribbon on the bottom right corner of the
tile. Currently, we adopted three values:

Express: for those applications already installed in the image used to create the Virtual Instance,
to speed-up the deployment.

Docker: for those applications run using a Docker container.

Live build: for those applications installed on a bare OS image from scratch.

Example

metadata:
icon: https://elixir-europe.org/system/files/elixir_node_italy.png
display_name: "Custom application name"
ribbon: true
ribbon_tag: "Test"
ribbon_color: "yellow"
...

ribbon_color

Documentation Define the color of the ribbons. Possible colors are: white, black, grey, blue, green,
turquoise, purple, red, orange, yellow.

Example

metadata:
icon: https://elixir-europe.org/system/files/elixir_node_italy.png
display_name: "Custom application name"
ribbon: true
ribbon_tag: "Test"
ribbon_color: "yellow"
...

pinned

Description Define the three applications which can be displayed in the Most used top row.

Example

metadata:
icon: https://elixir-europe.org/system/files/elixir_node_italy.png
display_name: "Custom application name"
virtualization_type: "Live build"
pinned: 'yes'
...

pin_order

Description Define the order of the three pinned application: 0 for the first place, 1 for the second and 2
for the third.

25.1. Configuration 165

Laniakea Documentation, Release 2.0.0

Example

metadata:
icon: https://elixir-europe.org/system/files/elixir_node_italy.png
display_name: "Custom application name"
virtualization_type: "Live build"
pinned: 'yes'
pin_order: '0'

166 Chapter 25. Laniakea Dashboard

CHAPTER 26

Laniakea installation

Laniakea relies on the INDIGO-DataCloud software catalogue. The Fig. 1 shows the deployment strategy to be
followed to install Laniakea.

Fig 1: PaaS component architecture scheme

We tested our deployment on OpenStack Mitaka and Stein, using Ubuntu 16.04 as default OS.

Docker containers are used to provide the INDIGO microservices: each INDIGO component is installed using its
official Docker container and run on a specific Virtual Machine.

Tab. 1 shows the VMs tha has to be created, their requirements and the corresponding ports configuration needed to
install Laniakea.

Please create the needed VMs with the following configuration:

167

https://www.indigo-datacloud.eu/electricindigo-software-catalogue
https://releases.openstack.org/mitaka/index.html
https://releases.openstack.org/stein/index.html

Laniakea Documentation, Release 2.0.0

168 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

INDIGO Compo-
nent

RAM vCPU Ports Network

Proxy server 2 GB 1 22, 443, 8080

public IP
private IP

Identity and Access
Manager (IAM)

4 GB 2 22, 443 public IP

Infrastructure Man-
ager (IM)

4 GB 2 22, 8800 private IP

Change
Management
Database (CMDB),
Cloud Provider
Ranker (CPR)

4 GB 2 22, 443, 5984, 8080,
8081

private IP

Service Level
Agreement Man-
ager (SLAM)

2 GB 1 22, 8443, 443 public IP

PaaS Orchestrator 4 GB 2 22, 443 private IP
HashiCorp Vault
and Dashboard

4 GB 2 22, 8200, 8250, 443 public IP

In particular we highlight in the table the VM Network configuration, i.e. if the VM needs a public IP address to be
accessed from outside or a private IP address is enough.

Fig 2: INDIGO PaaS VMs view on OpenStack

26.1 Services end-points

Once installed the services will be available at the following endpoint:

26.1. Services end-points 169

Laniakea Documentation, Release 2.0.0

Table 1: Services end-points
Service end-point
IAM https://<iam_vm_dns_name>/
SLAM https://<slam_vm_dns_name>:8443/auth
Proxy https://<proxy_vm_dns_name>
CMDB https://<proxy_vm_dns_name>/couch/_utils/database.html?indigo-cmdb-v2
IM https://<proxy_vm_dns_name>/im
CPR https://<proxy_vm_dns_name>/cpr
Orchestrator https://<proxy_vm_dns_name>/orchestrator
Dashboard https://<dashboard_vm_dns_name>

26.2 Service installation

26.2.1 Prerequisites

The installation procedure exploits Ansible to deploy all the INDIGO services.

A Virtual Machine with ansible is mandatory for this purpose, which we will refer to as control machine in the
following. This VM will be used to run the installation procedure of each INDIGO component on the remote VMs.

Here, we will exploit the same VM we will use to deploy the Proxy Server.

VM configuration

OS Ubuntu 16.04
vCPUs 2
RAM 4 GB
Network Public and private IP address.

This VM will be used as control machine VM to run Ansible and will also serve as host for the proxy server.

Warning: All the command will be run on this control machine VM!

Ansible installation

Ansible can be easily installed following the documentation.

We tested the whole procedure using Ansible 2.8.3 with Ubuntu 16.04.

Configuration

1. Clone the indigopaas-deploy repository, the collection of recipes to install INDIGO-DataCloud PaaS micro-
services

170 Chapter 26. Laniakea installation

https:/
https:/
https:/
https:/
https:/
https:/
https:/
https:/
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#latest-releases-via-apt-ubuntu
https://github.com/indigo-dc/indigopaas-deploy/tree/devel

Laniakea Documentation, Release 2.0.0

git clone -b v1.0 https://github.com/indigo-dc/indigopaas-deploy.git

cd indigopaas-deploy

mkdir ansible/inventory

2. Create the file indigopaas-deploy/ansible/inventory/inventory and set the IP of the virtual
machines for each service as shown in the following:

[iam]
<iam_vm_public_ip>

[im]
<im_vm_private_ip>

[cmdb]
<cmdb_vm_private_ip>

[cpr]
<cpr_vm_private_ip>

[slam]
<slam_vm_public_ip>

[proxy]
<proxy_vm_private_ip>

[orchestrator]
<orchestrator_vm_private_ip>

[vault]
<vault_vm_public_ip>

[orchestrator-dashboard]
<dashboard_vm_public_ip>

Warning: CMDB and CPR will be host on the same Virtual Machine in this guide.

Warning: Vault and the Orchestrator Dashboard will be host on the same Virtual Machine in this guide.

3. Create the group_vars directory in indigopaas-deploy/ansible/inventory/

cd indigopaas-deploy/ansible/inventory

mkdir group_vars

This directory will be populated with the YAML files with the configuration variables for each indigo compo-
nent, with the following structure:

group_vars/
cmdb.yml
iam.yaml

26.2. Service installation 171

Laniakea Documentation, Release 2.0.0

im.yaml
orchestrator.yaml
proxy.yaml
slam.yaml

SSH key pair configuration

To run Ansible on remote hosts we need to configure an SSH connection on each VM.

You can create a new SSH key

ssh-keygen -t rsa -b 4096

The default vaules should be ok.

Then you can distribute your new key copying and pasting the public key, i.e. the content of the file .ssh/id_rsa.
pub, to /root/.ssh/authorized_keys on each virtual machine allowing ansible to to execute indigopaas-
deploy roles.

Warning: The Ansible roles will install all the services over HTTPS protocol using Let’s Eencrypt certificates.

26.2.2 Identity Access Manager (IAM)

The INDIGO Identity and Access Management (IAM) is an Authentication and Authorisation Infrastructure (AAI)
service which manages users credentitials and attributes, like group membership, and authorization policies to access
the resources.

Note: Current IAM version: v1.5.0.rc2

Note: After IAM installation it is needed to configure the Cloud provider identity service to accept the INDIGO IAM
OpenID Connect authentication. For Openstack Keystone this is a standard configuration and the documentation can
be found here. Furthermore, to enable more OpenID Connect providers configured in the apache mod_auth_openidc
module used by Keystone, in order to not change Keystone configuration, it is possible to exploit the ESACO plugin.
At the moment, for example, it is used with OpenStack at ReCaS-Bari datacenter. An example of integration is
available here.

VM configuration

Create VM for IAM. The VM should meet the following minimum requirements:

OS Ubuntu 16.04
vCPUs 2
RAM 4 GB
Network Public IP address.

172 Chapter 26. Laniakea installation

https://indigo-dc.gitbook.io/keystone-with-oidc-documentation/
https://github.com/indigo-iam/esaco
https://github.com/andreaceccanti/esaco-integration

Laniakea Documentation, Release 2.0.0

Warning: All the command will be run on the control machine.

Enable Google Authentication

To enable Google authentication access to Google developers console and create and configure a new credential
project.

1. Create Credentials > OAuth Client ID

2. Application Type: Web Application

3. Name: Set a custom Service Provider (SP) name

4. Authorized JavaScript origins: https://<iam_vm_dns_name>.

5. Authorized redirect URIs: https://<iam_vm_dns_name>/openid_connect_login

6. Create the client

7. Copy your client ID and client secret

Create the file indigopaas-deploy/ansible/application-oidc.yml, copying and pasting the client
ID, client Secret and the IAM url

oidc:
providers:
- name: google
issuer: https://accounts.google.com
client:

clientId: <iam_google_client_id>
clientSecret: <iam_google_client_secret>
redirectUris: https://<iam_url>/openid_connect_login
scope: openid,profile,email,address,phone

loginButton:
text: Google
style: btn-social btn-google
image:

fa-icon: google

Enable ELIXIR-AAI Authentication

To enable you need to request a valid client ID and client Secret. Please read the corresponding documentation.

Then create the file indigopaas-deploy/ansible/application-oidc.yml, copying and pasting the
client ID, client Secret and the IAM url:

oidc:
providers:
- name: elixir-aai
issuer: https://login.elixir-czech.org/oidc/
client:

clientId: <iam_elixiraai_client_id>
clientSecret: <iam_elixiraai_client_secret>
redirectUris: https://<iam_fqdn>/openid_connect_login
scope: openid,groupNames,bona_fide_status,forwardedScopedAffiliations,email,

→˓profile
loginButton:

(continues on next page)

26.2. Service installation 173

https://console.developers.google.com/apis/credentials
https:/
https:/
https://elixir-europe.org/services/compute/aai

Laniakea Documentation, Release 2.0.0

(continued from previous page)

text:
style: no-bg
image:

url: https://raw.githubusercontent.com/Laniakea-elixir-it/ELIXIR-AAI/master/
→˓login-button-orange.png

size: medium

Installation

In the following, both Google and ELIXIR-AAI authentication methods will be enabled. To achieve this the
indigopaas-deploy/ansible/application-oidc.yml with Google and ELIXIR-AAI corresponding
clients ID and clients Secret, looks like:

oidc:
providers:
- name: google
issuer: https://accounts.google.com
client:

clientId: <iam_google_client_id>
clientSecret: <iam_google_client_secret>
redirectUris: https://<iam_fqdn>/openid_connect_login
scope: openid,profile,email,address,phone

loginButton:
text: Google
style: btn-social btn-google
image:

fa-icon: google
- name: elixir-aai
issuer: https://login.elixir-czech.org/oidc/
client:

clientId: <iam_elixiraai_client_id>
clientSecret: <iam_elixiraai_client_secret>
redirectUris: https://<iam_fqdn>/openid_connect_login
scope: openid,groupNames,bona_fide_status,forwardedScopedAffiliations,email,

→˓profile
loginButton:

text:
style: no-bg
image:

url: https://raw.githubusercontent.com/Laniakea-elixir-it/ELIXIR-AAI/master/
→˓login-button-orange.png

size: medium

Create the file indigopaas-deploy/ansible/inventory/group_vars/iam.yaml with the following
configured values:

iam_fqdn: <iam_vm_dns_name>
iam_mysql_root_password: *******
iam_organization_name: '<your_organization_name>'
iam_logo_url: <logo_url>
iam_account_linking_disable: true
iam_mysql_image: "mysql:5.7"
iam_image: indigoiam/iam-login-service:v1.5.0.rc2-SNAPSHOT-latest
iam_notification_disable: true
iam_notification_from: 'iam@{{iam_fqdn}}'

(continues on next page)

174 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

(continued from previous page)

iam_enable_oidc_auth: true
iam_application_oidc_path: "/root/indigopaas-deploy/ansible/application-oidc.yml"
iam_admin_email: '<valid_email_address>'

Warning: Set also your custom mysql password with: iam_mysql_root_password.

Warning: Please provide a valid e-mail address, which is mandatory for Let’s Encrypt certificate creation.

It is possible to enable mail notification adding the following parameters:

iam_notification_disable: false
iam_notification_from: 'laniakea-alert@example.com'
iam_notification_admin_address: <valid_email_address>
iam_mail_host: <mail_server_address>

This is needed to allow user registration, e.g. to enable confirmation e-mails.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-iam.yml

Note: Default administrator credentials:

username: admin
password: password

Fig.2: IAM login page

Video tutorial

IAM test

Basic IAM tests.

Test 1: login as admin

1. Login as admin

username: admin
password: password

Warning: Change the default password.

26.2. Service installation 175

Laniakea Documentation, Release 2.0.0

176 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

Test 2: Register a new user

1. Click Register a new account

2. Fill the form

3. Login as admin and accept the request

4. Login as new user

The full registration procedure is described in the Authentication section.

Test 3: Register using Google account (optional)

1. Sign-in with Google

2. Login as admin and accept the request

3. Login with Google

The full registration procedure is described in the Authentication section.

Create IAM Client

Registered clients allow to request and receive information about authenticated end-users. Each INDIGO service must
authenticate to a dedicated IAM client using a client id and a client secret.

To create a IAM client or a protetect resource, please follow these instructions:

Create a IAM client or a protected resource

1. Login as administrator or registered user.

2. Click on MitreID Dashboard and then Self-service client registration for client creation or Self-service pro-
tected resource registration to register a new protected resource.

3. Click on New client and provides at least the the following parameters:

Client name = iam-client-name

redirect URI(s) = http(s)://<service_url>

Warning: The redirect URI(s) is required only for client creation.

4. In the Access tab configure your client as requested by your service, for example:

Scopes: openid, profile, email, address, phone, offline_access

Grant Types: authorization code, refresh

5. Save the client.

6. Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future
access.

26.2. Service installation 177

Laniakea Documentation, Release 2.0.0

178 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 179

Laniakea Documentation, Release 2.0.0

180 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 181

Laniakea Documentation, Release 2.0.0

182 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

7. If you need Token Introspection and/or Token exchange, login as Administrator user, and through the ADMIN-
ISTRATIVE, Manage Clients, in the Access tab flag the needed options.

Obtaining an IAM access token

To get a vaild IAM access token, please follow these instructions:

Obtaining an IAM access token

Prerequisites

1. Create a IAM client. The Redirect URI is not important, so you can exploit the IAM address itself.

2. Give the client the rigth Scopes and Grant Types as in the figure:

3. Save.

4. Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future
access.

5. Login as Administrator user and select from the left menu Manage Clients.

6. Select the client just created.

7. Navigate to the Tokens tab and set it as in the figure and save. In particular the Device Code Timeout should
not be empty.

8. On any linux distirbution, e.g. Ubuntu, Install jq:

apt-get install jq

9. Download the following script:

wget https://raw.githubusercontent.com/Laniakea-elixir-it/Scripts/master/IAM/dc-
→˓get-access-token.sh

10. Give dc-get-access-token.sh execution permissions:

chmod +x dc-get-access-token.sh

11. Create the file ìam.rc with the following content:

IAM_DEVICE_CODE_CLIENT_ID="<get_iam_token_client_id>"
IAM_DEVICE_CODE_CLIENT_SECRET="<get_iam_token_client_secret>"
IAM_TOKEN_ENDPOINT="<iam_url>/token"
IAM_DEVICE_CODE_ENDPOINT="<iam_url>/devicecode"

Get IAM access token

1. Run dc-get-access-token.sh script

./dc-get-access-token.sh

2. Open in a browser the URL obtained from the script and paste code:

3. Authorize the client to create a token:

26.2. Service installation 183

Laniakea Documentation, Release 2.0.0

184 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 185

Laniakea Documentation, Release 2.0.0

186 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 187

Laniakea Documentation, Release 2.0.0

4. Type `Y on the shell script and get your access token:

26.2.3 Proxy server

A proxy server is used to expose IM, CMDB, CPR and the PaaS Orchestrator.

VM configuration

The control machine can be used to run the proxy server. The VM should meet the following minimum requirements:

OS Ubuntu 16.04
vCPUs 1
RAM 2 GB
Network Public and private IP address.

Warning: All the command will be run from the control machine.

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/proxy.yaml with the follow-
ing configured values:

letsencrypt_email: "<valid_email_address>"
domain_name: "<proxy_vm_dns_name>"

Warning: Please provide a valid e-mail address, which is mandatory for Let’s Encrypt certificate creation.

Run the role using ansible-playbook

188 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 189

Laniakea Documentation, Release 2.0.0

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-proxy.yml

Video tutorial

26.2.4 Infrastructure Manager (IM)

The Infrastructure Manager (IM) is used to deploy virtual infrastructures, e.g. Galaxy and the underlying virtual
hardware.

Note: Current IM version: 1.8.6.1

VM configuration

Create VM for IM. The VM should meet the following minimum requirements:

OS Ubuntu 16.04
vCPUs 2
RAM 4 GB
Network Private IP address.

Warning: All the command will be run from the control machine VM.

IAM protected resource configuration

Register a new protected resource for IM on IAM:

1. Login on IAM as Administrator User.

2. Navigate to MitreID Dashboard and select from the left panel Self-service protected resource registration.

3. Create a New Resource.

4. Give it a name, e.g. im_test.

5. Keep the default configuration and Save.

6. Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future
access.

7. As Administrator user select from the left menu Manage Clients.

8. Select the client just created.

9. Navigate to the Tokens tab and set it as in the figure and save. In particular set:

• Access Token Timeout: 3600

• ID Token Timeout: 1800

190 Chapter 26. Laniakea installation

https://www.grycap.upv.es

Laniakea Documentation, Release 2.0.0

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/im.yaml with the following
configured values:

im_image_version: 1.8.6.1
im_repo_tag: v1.8.6
im_mysql_root_password: ********
im_mysql_password: *********
im_cfg_oidc_issuers: 'https://<iam_address>/'
im_cfg_oidc_client_id: '<im_client_id>'
im_cfg_oidc_client_secret: '<im_client_secret>'
im_cfg_ssh_reverse_tunnels: 'True'
im_ansible_version: '2.2.3.0'

Warning: Set also your custom mysql password with: iam_mysql_root_password and
im_mysql_password.

Warning: Current supported Ansible version: 2.2.3.0

Run the role using the ansible-playbook command:

26.2. Service installation 191

Laniakea Documentation, Release 2.0.0

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-im.yml

Video tutorial

IM configuration

In order to allow IM to distinguish private from public networks, IM needs to be properly configured. Edit the
IM configuration file /etc/im.cfg, modifying the field PRIVATE_NET_MASKS with your favourite text editor,
adding the network IP address. The IM will considers IPs not in these subnets as Public IPs.

...

PRIVATE_NET_MASKS = 10.0.0.0/8,172.16.0.0/12,192.168.0.0/16,169.254.0.0/16,100.64.0.0/
→˓10,192.0.0.0/24,198.18.0.0/15,192.169.0.0/16

...

IM testing

1. Get IAM access token (see section Obtaining an IAM access token)

2. Download an IM tosca template

mkdir im_test

cd im_test

wget https://raw.githubusercontent.com/Laniakea-elixir-it/IM-templates/devel/
→˓node_with_image.yaml

3. Configure the image url as ost://<keystone_url>/<image_id>, as for example:

image: ost://cloud.recas.ba.infn.it/f38d4e87-cc7e-4035-921b-6b200a9ebaee

save and exit.

POST

The POST request istantiate a new deployment

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type = InfrastructureManager;
→˓username = mtangaro; token = eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.
→˓eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.
→˓OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-
→˓O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-
→˓tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host =
→˓<keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>;
→˓service_region = <region>' -i -X POST https://cloud-90-147-75-119.cloud.ba.infn.it/
→˓im/infrastructures --data-binary "@node_with_image.yaml"

HTTP/1.1 100 Continue

(continues on next page)

192 Chapter 26. Laniakea installation

https://imdocs.readthedocs.io/en/latest/manual.html#confval-PRIVATE_NET_MASKS

Laniakea Documentation, Release 2.0.0

(continued from previous page)

HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 15:54:37 GMT
Content-Type: text/uri-list
Content-Length: 100
Connection: keep-alive
Infid: c90796fe-e5f5-11e9-930c-fa163eefe815

https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/c90796fe-e5f5-11e9-
→˓930c-fa163eefe815

Where Infid, in this case a9feb488-e5f3-11e9-aafa-fa163eefe815, is the IM UUID of your deployment

GET

The GET request can be used to list the VMs associated to a deployment:

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type =
→˓InfrastructureManager; username = mtangaro; token =
→˓eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.
→˓eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.
→˓OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-
→˓O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-
→˓tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host =
→˓<keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>;
→˓service_region = <region>' -i -X GET https://cloud-90-147-75-119.cloud.ba.infn.it/
→˓im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815
HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 18:49:43 GMT
Content-Type: text/uri-list
Content-Length: 106
Connection: keep-alive

https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/c90796fe-e5f5-11e9-
→˓930c-fa163eefe815/vms/0

The GET request can be used to list all VMs information:

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type =
→˓InfrastructureManager; username = mtangaro; token =
→˓eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.
→˓eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.
→˓OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-
→˓O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-
→˓tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host =
→˓<keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>;
→˓service_region = <region>' -i -X GET https://cloud-90-147-75-119.cloud.ba.infn.it/
→˓im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815/vms/0

(continues on next page)

26.2. Service installation 193

Laniakea Documentation, Release 2.0.0

(continued from previous page)

HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 18:52:38 GMT
Content-Type: text/plain
Content-Length: 2476
Connection: keep-alive

network public_net (outports = '9001/tcp-9001/tcp,9000/tcp-9000/tcp' and
provider_id = 'public_net' and
outbound = 'yes')
system simple_node (
instance_name = 'userimage-157011807495' and
cpu.arch = 'x86_64' and
disk.0.image.url = 'ost://cloud.recas.ba.infn.it/f38d4e87-cc7e-4035-921b-6b200a9ebaee
→˓' and
net_interface.0.ip = '90.147.75.76' and
memory.size = 2048M and
cpu.count = 1 and
disk.0.os.credentials.private_key = '-----BEGIN RSA PRIVATE KEY-----
MIIEqAIBAAKCAQEAmNLLui9dXce/1XAj21inN5K4zrpgtst7cAJmZwnbIrVqEiNa
q60MhINASHP5VR0HQpMqWuC1dlDE09XGp6qGzPa1+RFn894j5jd9X/H/HFbvMYN4
DFq5AF+Lwj0AkCQT4+R/9iYYJbjuZug3UflAspCYzg7Ht94lVRNAzhlCM++96kkO
j9jNxI5enX+MdKA0n1mOVhAyRi3wtfaQmhk2q47R1X9URqeE8UaZf6xL9KincVb/
X94Wnc0dtbQfyHsNWM/Oo78pkrSfKxUNHC18Em/ZfJ+ADm7u27rY+V2eiKK+kahm
8PCvOGO3qblBqwcnPUh/clVm5JGaiLal/keDlQIDAQABAoIBAAnjsj1VLVSRRY+5
VwitvvxwqTbvhqytlEpWTWwjjiO726Za1VZAt4untrQ5lQv1+e9L+LSyz+tdJK+U
qOtWtKx01qfMgY6ddHNEaf+YeGrMEWSB3nXmNQyaIkAqlGu/ee4IbmNuaaefRQYx
xsquN4qWotzKxg/W91F/EnWD2u3jXyxOAOmRFBy5y1pU9YhcDR8w46+ZyV7h04f8
hFbJILYA5kzmFtwHScUq5yGLlcddDGSK40EGJNpni4gNh61D4DOD/yzCrgqhL+th
wfwSMOVhxWPBKOqlQDHqOyb21TVc+5UeFBwb+3LbfCdjfA7Sfi4Dpygvv1FPELCl
ZGF1+0ECggCBAMUi+q15uresVXCyQrQ9HmZ2FcRwNc9BtB0ag5RuuuFNsh4suPcL
hxJVG35vTfRgf9USO2WzCrgiAHzij6yT/USIoAFOUvLrtg+T5abd6Fec3lrvXgsL
LLVX0NPK0RVqKhTAgNzEAqGEOkd8Ew3WWH0Klrwr3uxp1sEO8I3kt8/RAoIAgQDG
dImkibakryLFd833OWdG33ClWT0kgFRBerq8taHZjdBejze9n67LzJludW77lqUQ
VCpH424lxP7qIT+hNs/pFXi9Sq/VBsbfehwPoetDgv0yKSP1mRHiKOvTu47hHdst
4q4iwxuYENLBjjESMKR2nge1pJMe2EUFURWHx87MhQKCAIAvp/QXqbzEmCmTc9SC
Q+AsftFmSoYHk2eaPYWfhWEyBBlSCBeyyRufB+n8l6WttQJSHPU08aJevwGFLzPy
UVhBkBG2HxwYU3kQrP0waKa5P1fVfdYrL0lgkVkPShFfbum7WIoOVGgaaZ+5Fjp4
9t8vYzbrSGO8nR1oUFdAxhDVcQKCAIEAspZsxwSmt8xjHhCR6MhfiAfK9wE3ZIGX
UNWA9hD9dSmJOY7oOlxYkE2uRRiopv8Jy4fyBH9Fv/dm7oq9F/abYsVPwghT8wAG
N1VLq0Wq0TYvY9Rh58G3ti3dCszd5vdXJhO3YNDzJAT/o+6xeg0L8zKC/ZL8UeWN
NxugpG/KSYECggCAbcJeVFjNQYEhroRg2dmVY/Y6cmndvCUudDs8hvtTmvWmFGri
7dY1T7ACdWAbFYh+Q1x2SswHAOXC+FYJ2HJ8InbKeRAlQ7KDgDsofPGRCTRUL9HO
mZQkIZqryAcSnC++OLNnbFGsTY4vhyotb3IgR/pC+6RSgqJFabFtA7Ttkgg=
-----END RSA PRIVATE KEY-----
' and
provider.host = 'cloud.recas.ba.infn.it' and
disk.0.free_size = 20G and
instance_id = 'c6e54a1e-f2ce-4cd5-a38f-f26858d57d7c' and
instance_type = 'small' and
state = 'unconfigured' and
provider.port = 5000 and
provider.type = 'OpenStack' and
net_interface.0.connection = 'public_net' and
disk.0.os.name = 'linux' and
disk.0.os.credentials.username = 'cloudadm'

(continues on next page)

194 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

(continued from previous page)

)

DELETE

The DELETE request can be used to delete the deployment:

curl -k -H 'Content-type: text/yaml' -H 'AUTHORIZATION: type =
→˓InfrastructureManager; username = mtangaro; token =
→˓eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.
→˓eyJzdWIiOiJhOGJjZmU0OS1hOWY3LTQzMDctYWIzYS0wMmMyYmMzZWUxMTgiLCJpc3MiOiJodHRwczpcL1wvY2xvdWQtOTAtMTQ3LTc1LTIwNy5jbG91ZC5iYS5pbmZuLml0XC8iLCJleHAiOjE1NzAxMzIwNDYsImlhdCI6MTU3MDEyODQ0NiwianRpIjoiYmI5NjM4MmUtOGU5ZS00NmZmLWI2YzYtNWJkNGU1ZTFjZTRmIn0.
→˓OKqmt8NvUFWY22ui092yMPTIqCeGuyzjUfVAWllTeoZF-ea50RS91qSIHV8AW-
→˓O1AZSg4tM5O4W49jVSzvzVq4gLJEMKhBojaJSe9tVf0HE2REcfCb1pYi70jLBhC2TF-
→˓tiAmcb0ZywFcF3VEP8DhcPFrbd_JoiG0_q-vVtzcF4\nid = ost; type = OpenStack; host =
→˓<keystone_url>; username = <username>; password = ***** ; tenant = <tenant_name>;
→˓service_region = <region>' -i -X DELETE https://cloud-90-147-75-119.cloud.ba.infn.
→˓it/im/infrastructures/c90796fe-e5f5-11e9-930c-fa163eefe815

HTTP/1.1 200 OK
Server: nginx/1.10.3 (Ubuntu)
Date: Thu, 03 Oct 2019 15:43:52 GMT
Content-Type: text/plain
Content-Length: 0
Connection: keep-alive

Test IM using OIDC

It is possible to use an OIDC Token with IM for POST, GET and DELETE calls:

Note: Please note in this case that the username parameter in the API call must be set to IAM organization
name. For example, in the following, we used as IAM organization name laniakea and the username has been set
accordingly.

POST

export IAM_ACCESS_TOKEN="..."

curl -k -H 'Content-type: text/yaml' -H "Authorization: id = ost; type = OpenStack;
→˓host = https://cloud.recas.ba.infn.it:5000/; username = laniakea; password = $IAM_
→˓ACCESS_TOKEN; tenant = oidc; auth_version = 3.x_oidc_access_token; service_region =
→˓recas-cloud;\nid = im; type = InfrastructureManager; token = $IAM_ACCESS_TOKEN" -i -
→˓X POST https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures --data-
→˓binary "@node_with_image.yaml"

GET

26.2. Service installation 195

Laniakea Documentation, Release 2.0.0

export IAM_ACCESS_TOKEN="..."

curl -k -H 'Content-type: text/yaml' -H "Authorization: id = ost; type = OpenStack;
→˓host = https://cloud.recas.ba.infn.it:5000/; username = laniakea; password = $IAM_
→˓ACCESS_TOKEN; tenant = oidc; auth_version = 3.x_oidc_access_token; service_region =
→˓recas-cloud;\nid = im; type = InfrastructureManager; token = $IAM_ACCESS_TOKEN" -i -
→˓X GET https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures

DELETE

export IAM_ACCESS_TOKEN="..."

curl -k -H 'Content-type: text/yaml' -H "Authorization: id = ost; type = OpenStack;
→˓host = https://cloud.recas.ba.infn.it:5000/; username = laniakea; password = $IAM_
→˓ACCESS_TOKEN; tenant = oidc; auth_version = 3.x_oidc_access_token; service_region =
→˓recas-cloud;\nid = im; type = InfrastructureManager; token = $IAM_ACCESS_TOKEN" -i -
→˓X DELETE https://cloud-90-147-75-119.cloud.ba.infn.it/im/infrastructures/
→˓<infrastructure_uuid>

FAQ

Where are the deployments log?

The deployment logs are available in /var/tmp/.im/<im-id>/<deployment_ip>/ctxt_agent.log. For example:

tail -f /var/tmp/.im/1b0e064c-9a29-11e7-9c45-300000000002/90.147.102.27_0/ctxt_
→˓agent.log

Note: After each ansible role run, the log file is deleted!!

References

IM configuration

IM APIs documentation

26.2.5 CMDB and CPR

The Configuration Management DataBase (CMDB) is used to contain all the configuration items (CIs) that are valid
to manage the infrastructure.

The Cloud Provider Ranker is a standalone REST WEB Service which ranks cloud providers.

CMDB and CPR are installed on the same machine.

Note: Current CMDB version: indigo_2

196 Chapter 26. Laniakea installation

https://imdocs.readthedocs.io/en/latest/manual.html#configuration
https://imdocs.readthedocs.io/en/latest/REST.html

Laniakea Documentation, Release 2.0.0

Note: Current CPR version: indigo_2

VM configuration

Create VM for CMDB and CPR. The VM should meet the following minimum requirements:

OS Ubuntu 16.04
vCPUs 2
RAM 4 GB
Network Private IP address.

Warning: All the command will be run from the control machine VM.

CMDB installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/cmdb.yaml with the following
configured values:

cmdb_crud_password: *****
cmdb_oidc_userinfo: https://<proxy_url>/userinfo

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-cmdb.yml

CMDB installation video tutorial

CMDB configuration

The current version of CMDB is supporting set of configuration elements that are vital for INDIGO operations:

• providers: organizational entity that owns or operates the services;

• services (both computing and storage): main technical component description defining type and location of
technical endpoints;

• images: local service metadata about mapping of INDIGO-wide names of images, which are necessary to
translate TOSCA description into service specific request.

CMDB needs to be populated with IaaS provider, services and images information.

Warning: SSH on CMDb virtual machine.

1. Create a directory called cmdb-data

mkdir cmdb-data

26.2. Service installation 197

Laniakea Documentation, Release 2.0.0

2. Create the file cmdb-data/provider.json

{
"_id": "",
"data": {

"name": "",
"country": "",
"country_code": "",
"roc": "",
"subgrid": "",
"giis_url": "",
"owners": [""]

},
"type": "provider"

}

The _id field identifies the Cloud Provider and can be set as preferred

Warning: The provider owners list requrires at least a valid mail address, since this user has to be used for
the resource negotiation procedure, during SLAM configuration (see section slam)

3. Create the file cmdb-data/service.json

{
"_id": "",
"data": {

"service_type": "",
"endpoint": "",
"provider_id": "",
"region": "",
"sitename": "",
"hostname": "",
"type": "compute"

},
"type": "service"

}

Here the _id string identifies the service and can be set as preferred. On the contrary, the provider_id is the
_id previously set in the provider.json file.

4. Create the file cmdb-data/image.json

{
"type": "image",
"data": {

"image_id": "",
"image_name": "",
"architecture": "",
"type": "linux",
"distribution": "ubuntu",
"version": "16.04",
"service": ""

}
}

where the ìmage_id is the image ID on the Cloud Provider Manager, e.g. OpenStack.

198 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

The service field has to be set with the _id set in the service.json file.

Note: The image_name field is the parameter which is used in the image field in the tosca template to identify
the image to use (see section Galaxy template)

5. Add providers, services and images to CMDB.

Create the file cmdb-add-data.sh with the content:

#!/bin/bash

source /etc/cmdb/.cmdbenv

if [[-z "$CMDB_CRUD_USERNAME"]]; then
echo ENV variable CMDB_USER not set
exit 1
fi

if [[-z "$CMDB_CRUD_PASSWORD"]]; then
echo ENV variable CMDB_PASSWORD not set
exit 1
fi

if [[-z "$1"]]; then
echo "
usage: $0 <json>
"
exit 1
fi

give it execution permissions:

chmod +x cmdb-add-data.sh

Finally you can upload informations to cmdb using curl:

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H
→˓"Content-Type: application/json" -d@cmdb-data/provider.json

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H
→˓"Content-Type: application/json" -d@cmdb-data/service.json

curl -X POST http://cmdb:<cmdb_crud_password>@localhost:5984/indigo-cmdb-v2 -H
→˓"Content-Type: application/json" -d@cmdb-data/image.json

6. Check on CMDB couchDB if your configuration has been uploaded from your browser at the following end-
point: https://<proxy_url>/couch/_utils/database.html?indigo-cmdb-v2

CMDB couchDB after the configuration process with provider, service and image.

Note: All CMDB image are listed at the address: https://<proxy_url>/cmdb/image/list?include_docs=true

26.2. Service installation 199

https:/

Laniakea Documentation, Release 2.0.0

CMBD configuration json example

These are the configuration files used for Laniakea@ReCaS service, the Laniakea installation at the ReCaS Datacen-
ter:

provider.json

{
"_id": "provider-RECAS-BARI",
"data": {

"name": "RECAS-BARI",
"country": "Italy",
"country_code": "IT",
"roc": "NGI_IT",
"subgrid": "",
"giis_url": "ldap://cloud-bdii.recas.ba.infn.it:2170/GLUE2DomainID=RECAS-BARI,

→˓o=glue",
"owners": ["*****"]

},
"type": "provider"

}

service.json

{
"_id": "service-RECAS-BARI-openstack",
"data": {

"service_type": "eu.egi.cloud.vm-management.openstack",
"endpoint": "https://cloud.recas.ba.infn.it:5000/v3",
"provider_id": "provider-RECAS-BARI",
"region": "recas-cloud",
"sitename": "RECAS-BARI",
"hostname": "cloud.recas.ba.infn.it",
"type": "compute"

(continues on next page)

200 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

(continued from previous page)

},
"type": "service"

}

image.json

{
"type": "image",
"data": {

"image_id": "8f667fbc-40bf-45b8-b22d-40f05b48d060",
"image_name": "RECAS-BARI-ubuntu-16.04",
"architecture": "x86_64",
"type": "linux",
"distribution": "ubuntu",
"version": "16.04",
"service": "service-RECAS-BARI-openstack"

}
}

CMDB configuration video tutorial

CPR installation

CPR does not need any configuration. Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-cpr.yml

CPR video tutorial

26.2.6 SLA Tool

26.2.7 PaaS Orchestrator

PaaS Orchestrator is the core component of the PaaS layer. It collects high-level deployment requests from the software
layer, and coordinates the resource or service deployment.

Note: Current Orchestrator version: 2.1.2-final

VM configuration

Create VM for IM. The VM should meet the following minimum requirements:

OS Ubuntu 16.04
vCPUs 2
RAM 4 GB
Network Private IP address.

26.2. Service installation 201

Laniakea Documentation, Release 2.0.0

IAM protected resource configuration for the Orchestrator

1. Login on IAM then MitreID Dashboard and select Self-service protected resource registration as Adminis-
trator user.

2. Select New Resource with the following parameters

Name: orchestrator_client

Scopes: openid, profile, offline_access

3. Save the protected resource.

202 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

4. Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future
access.

5. Edit the protected resource configuration page as Administrator user, through the ADMINISTRATIVE, Man-
age Clients

6. Enable Token exchange and Check the flag at Introspection:

Introspection Allow calls to the Introspection Endpoint?

7. Navigate to the Tokens tab and set:

• Access Token Timeout: 7200

• ID Token Timeout: 7200

and flag:

• Refresh tokens are issued for this client

• Refresh tokens for this client are re-used

• Active access tokens are automatically revoked when the refresh token is used

• Refresh tokens do not time out

8. Save again the protected resource.

IAM protected resource configuration for CLUES

1. Login on IAM then MitreID Dashboard and select Self-service protected resource registration as Adminis-
trator user.

26.2. Service installation 203

Laniakea Documentation, Release 2.0.0

2. Select New Resource and set the following parameters

Name: clues_client

Scopes: openid, profile, email, address, phone, offline_access

3. Save the protected resource.

4. Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future
access.

5. Edit the protected resource configuration page as Administrator user, through the ADMINISTRATIVE, Man-
age Clients

6. Enable Token exchange and Check the flag at Introspection:

7. Navigate to the Tokens tab and set:

• Access Token Timeout: 7200

• ID Token Timeout: 7200

and flag:

• Refresh tokens are issued for this client

• Refresh tokens for this client are re-used

• Active access tokens are automatically revoked when the refresh token is used

• Refresh tokens do not time out

8. Save the protected resource again.

204 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 205

Laniakea Documentation, Release 2.0.0

Orchestrator Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/orchestrator.yaml with
the following configured values:

orchestrator_url: https://<proxy_dns_name>/orchestrator
orchestrator_image: indigodatacloud/orchestrator:2.1.2-final
orchestrator_mysql_root_password: *****
orchestrator_mysql_password: *****
orchestrator_im_url: https://<proxy_dns_name>/im
orchestrator_cmdb_url: https://<proxy_dns_name>/cmdb
orchestrator_slam_url: https://<slam_dns_name>:8443/rest/slam
orchestrator_cpr_url: https://<proxy_dns_name>/cpr
orchestrator_iam_issuer: https://<iam_dns_name>/
orchestrator_iam_client_id: <orchestrator_client_id>
orchestrator_iam_client_secret: <orchestrator_client_secret>
orchestrator_clues_iam_client_id: <clues_client_id>
orchestrator_clues_iam_client_secret: <clues_client_secrett>
orchestrator_custom_types: https://raw.githubusercontent.com/Laniakea-elixir-it/
→˓indigopaas-resources/master/orchestrator/custom_types.yaml
disable_monitoring: True

Warning: SLAM and IAM are the only two services requiring a public IP, on the contrary all the others are
behind the proxy.

206 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 207

Laniakea Documentation, Release 2.0.0

Warning: In this guide we avoid monitoring installation, leaving this job to the Cloud provider.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator.yml

Video tutorial

FAQ

INDIGO PaaS Orchestrator

Orchent: the orchestrator CLI tool

Orchent is the indigo command line client.

Orchent: https://github.com/indigo-dc/orchent

INDIGO CLUES

CLUES is an elasticity manager system for HPC clusters and Cloud infrastructures that features the ability to power
on/deploy working nodes as needed (depending on the job workload of the cluster) and to power off/terminate them
when they are no longer needed.

208 Chapter 26. Laniakea installation

https://github.com/indigo-dc/orchent

Laniakea Documentation, Release 2.0.0

26.2. Service installation 209

Laniakea Documentation, Release 2.0.0

Official GitBook documentation: https://www.gitbook.com/book/indigo-dc/clues-indigo/details

Check worker nodes status

To check worker node status:

sudo clues status
node state enabled time stable (cpu,mem) used (cpu,
→˓mem) total
--
→˓---------
vnode-1 powon enabled 00h02'54" 0,0.0 1,
→˓1073741824.0
vnode-2 off enabled 00h41'00" 0,0.0 1,
→˓1073741824.0

CLUES commands:

clues --help
The CLUES command line utility

Usage: clues [-h]
→˓[status|resetstate|enable|disable|poweron|poweroff|nodeinfo|shownode|req_create|req_
→˓wait|req_get]

[-h|--help] - Shows this help

(continues on next page)

210 Chapter 26. Laniakea installation

https://www.gitbook.com/book/indigo-dc/clues-indigo/details

Laniakea Documentation, Release 2.0.0

(continued from previous page)

* Show the status of the platform
Usage: status

* Reset the state of one or more nodes to idle
Usage: resetstate <nodes>
<nodes> - names of the nodes whose state want to be reset

* Enable one or more nodes to be considered by the platform
Usage: enable <nodes>
<nodes> - names of the nodes that want to be enabled

* Disable one or more nodes to be considered by CLUES
Usage: disable <nodes>
<nodes> - names of the nodes that want to be disabled

* Power on one or more nodes
Usage: poweron <nodes>
<nodes> - names of the nodes that want to be powered on

* Power off one or more nodes
Usage: poweroff <nodes>
<nodes> - names of the nodes that want to be powered off

* Show the information about node(s), to be processed in a programmatically mode
Usage: nodeinfo [-x] <nodes>
[-x|--xml] - shows the information in XML format
<nodes> - names of the nodes whose information is wanted to be shown

* Show the information about node(s) as human readable
Usage: shownode <nodes>
<nodes> - names of the nodes whose information is wanted to be shown

* Create one request for resources
Usage: req_create --cpu <value> --memory <value> [--request <value>] [--count <value>]
--cpu|-c <value> - Requested CPU
--memory|-m <value> - Requested Memory
[--request|-r] <value> - Requested constraints for the nodes
[--count|-n] <value> - Number of resources (default is 1)

* Wait for a request
Usage: req_wait <id> [timeout]
<id> - Identifier of the request to wait
[timeout] - Timeout to wait

* Get the requests in a platform
Usage: req_get

Check worker nodes deployment

Worker node deployment log are available to: /var/log/clues2/clues2.log

Troubleshooting

26.2. Service installation 211

Laniakea Documentation, Release 2.0.0

Invalid Token

Symptoms: Galaxy jobs stuck in This job is waiting to run and stay gray in the Galaxy history.

The worker nodes are not correctly instantiated, due to an Invalid Token. Check /var/log/clues2/
clues2.log:

urllib3.connectionpool;DEBUG;2017-10-31 10:52:33,288;"GET /orchestrator/deployments/
→˓48126bd4-14d8-494d-970b-fb581a3e13b2/resources?size=20&page=0 HTTP/1.1" 401 None
[PLUGIN-INDIGO-ORCHESTRATOR];ERROR;2017-10-31 10:52:33,291;ERROR getting deployment
→˓info: {"code":401,"title":"Unauthorized","message":"Invalid token:
→˓eyJraWQiOiJyc2ExIiwiYWxnIjoiUlMyNTYifQ.
→˓eyJzdWIiOiI3REU4Qjg4MC1DNEQwLTQ2RkEtQjQxMS0wQTlCREI3OUYzOTYiLCJpc3MiOiJodHRwczpcL1wvaWFtLXRlc3QuaW5kaWdvLWRhdGFjbG91ZC5ldVwvIiwiZXhwIjoxNTA5NDQ0NDY2LCJpYXQiOjE1MDk0NDA4NjYsImp0aSI6IjAyZmE5YmM0LTBkMjctNGJkZi1iODVjLTJlMjM2NjNjNmY5OCJ9.
→˓QqjYzVs0h5kuqoBZQf5PPcYrsRJksTFyZO5Zpx8xPcfjruWHwwOnw9knQq8Ex3lwAXgi5qxdmqBDi4EIZAOaoFsPirlM7K6fCBE0-
→˓M_btm4nTbUvTSaUAfjki41DnPoEjLqXTTy8XLPUrCSmHVeqvSHHFipeSkP9OxKltlUadPc"}

Solution:

1. Stop CLUES: sudo systemctl stop cluesd.

2. Edit the file /etc/clues2/conf.d/plugin-ec3.cfg and change the value of the
INDIGO_ORCHESTRATOR_AUTH_DATA parameter with the new token.

3. Restart CLUES sudo systemctl start cluesd.

4. You also have to open the CLUES DB with sqlite3 command: sqlite3 /var/lib/clues2/clues.db
and delete old refreshed token: DELETE FROM orchestrator_token;. To exit from sqlite just type:
.exit.

26.2.8 Hashicorp Vault

Vault is exploited as secrets management store, to store and manage encryption passphrases

Note: Current version: 1.1.2

VM configuration

Create a VM for Vault. The VM should meet the following minimum requirements:

OS Ubuntu 16.04
vCPUs 2
RAM 4 GB
Network Public IP address.

Warning: All the command will be run from the control machine VM.

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/vault.yaml with the follow-
ing configured values:

212 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

vault_fqdn: <dashboard_vm_dns_name>
vault_image_name: vault:1.1.2
vault_letsencrypt_email: "<valid_email_address>"

Warning: Depending on your Cloud Provider network configuration, the vault_host variable needs to be
added and configured with the private ip address associated to the VM, for example when a floating IP is used.

In this case it is possible to set the IP address adding:

vault_host: '<vm_private_ip_address>'

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-vault.yml

Installation video tutorial

Vault initialization

The Vault initialization can not be automated. To initialize it and get your root token for the initial configuration

1. Login on the VM hosting Vault:

ssh root@<vault_vm_ip_address>

2. Initialize Vault:

docker exec -it vault vault operator init
Unseal Key 1: p7YF7vyLRrfeilwlD/QusQ+UESJiGrhn1TwCsBAa7fKV
Unseal Key 2: OHoyPApMFuQTz9B20bmpJjzLgkCi2ELr+zKFdvKq8lmL
Unseal Key 3: xDRcbkOsYL9uswFzCdFqpxudgvZFVfAwFCkigYMMMCHt
Unseal Key 4: LJ0hHW5dsmbuFAnL+W/4NMtZUbuNkILFWXxL3zTYblzQ
Unseal Key 5: Z1OvJ7RvT+pUVtqB93RAQ8q1s8l04clGVFn+oi22x4rZ

Initial Root Token: s.YxsTl9H3f1qgAqH3cj4JAXR8

Vault initialized with 5 key shares and a key threshold of 3. Please securely
distribute the key shares printed above. When the Vault is re-sealed,
restarted, or stopped, you must supply at least 3 of these keys to unseal it
before it can start servicing requests.

Vault does not store the generated master key. Without at least 3 key to
reconstruct the master key, Vault will remain permanently sealed!

It is possible to generate new unseal keys, provided you have a quorum of
existing unseal keys shares. See "vault operator rekey" for more information.

3. Every initialized Vault server starts in the sealed state. Unsealing has to happen every time Vault starts. It can be
done via the API and via the command line. To unseal the Vault, you must have the threshold number of unseal
keys. In the output above, notice that the “key threshold” is 3. This means that to unseal the Vault, you need 3
of the 5 keys that were generated.

26.2. Service installation 213

https://learn.hashicorp.com/vault/getting-started/deploy#sealunseal

Laniakea Documentation, Release 2.0.0

docker exec -it vault vault operator unseal p7YF7vyLRrfeilwlD/
→˓QusQ+UESJiGrhn1TwCsBAa7fKV
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true
Total Shares 5
Threshold 3
Unseal Progress 1/3
Unseal Nonce 7a0891bb-7d0e-6efa-2081-9c60941f9a6d
Version 1.1.2
HA Enabled false

docker exec -it vault vault operator unseal
→˓OHoyPApMFuQTz9B20bmpJjzLgkCi2ELr+zKFdvKq8lmL
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true
Total Shares 5
Threshold 3
Unseal Progress 2/3
Unseal Nonce 7a0891bb-7d0e-6efa-2081-9c60941f9a6d
Version 1.1.2
HA Enabled false

docker exec -it vault vault operator unseal
→˓xDRcbkOsYL9uswFzCdFqpxudgvZFVfAwFCkigYMMMCHt
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed false
Total Shares 5
Threshold 3
Version 1.1.2
Cluster Name vault-cluster-e6688ec2
Cluster ID ccf2e852-69ca-bcd6-0079-6c820f9c0e67
HA Enabled false

4. Finally, authenticate as the initial root token (it was included in the output with the unseal keys):

docker exec -it vault vault login s.YxsTl9H3f1qgAqH3cj4JAXR8
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token s.YxsTl9H3f1qgAqH3cj4JAXR8
token_accessor QEUBU4tepPWDatRu6jrnTbFW
token_duration ∞
token_renewable false
token_policies ["root"]
identity_policies []
policies ["root"]

214 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

Warning: Save the unseal keys and the root token. Please read Vault documentation.

Initialization video tutorial

References

Vault documentation

26.2.9 Laniakea Dashboard

The Laniakea Dashbaord is built on top of the INDIGO Orchestrator Dashboard.

Note: Current Dahsboard version: stable version

VM configuration

Create VM for Dashboard. The VM should meet the following minimum requirements:

OS Ubuntu 16.04
vCPUs 2
RAM 4 GB
Network Public IP address.

Warning: In this tutorial we will use the same VM for vault and the dashbord, being the two services strictly
connected.

This is not requred.

Warning: All the command will be run from the control machine VM.

IAM client configuration

1. Login on IAM as Administrator User.

2. Navigate to MitreID Dashboard and select from the left panel Self-service client registration.

3. Create a New client and fill the form with the following paramethers

Client name = dashboard_client

redirect URI(s) = https://<dashboard_vm_dns_name>/login/iam/authorized

4. In the Access tab select the follwing Scopes

26.2. Service installation 215

https://www.vaultproject.io/docs/concepts/seal.html
https://learn.hashicorp.com/vault/getting-started/deploy#initializing-the-vault

Laniakea Documentation, Release 2.0.0

216 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

Scopes: openid, profile, email, address, phone, offline_access

and for Grant Types select:

Grant types: authorization code

5. Save.

6. Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future
access.

Installation

The Laniakea dashboard can be installed in three different ways: Stateless, with MySQL database and with MySQL
and Vault integration.

The one with MySQL and Hashicorp Vault is the one used in Laniakea.

26.2. Service installation 217

Laniakea Documentation, Release 2.0.0

Install Laniakea dashboard (database and vault version)

Warning: Vault integration leverages on MySQL database. It can’t work with dashboard stateless version

Update the dashboard IAM client configuration

To enable Vault integration the token exchange is needed. Therefore, edit the IAM client previously created for the
dashboard.

Enable token exchange accessing to the client configuration page as Administrator user, through the ADMINISTRA-
TIVE, Manage Clients and check the flag token exchange in the Grant types section.

IAM client configuration for Vault

Create another IAM client for Vault, to enable oidc integration to authenticate users.

1. Login on IAM then MitreID Dashboard and select Self-service client registration as Administrator user.

2. Click on New client with the following parameters:

Client name: vault_client

redirect URI(s): https://<dashboard_vm_dns_name>:8200/ui/vault/auth/oidc/oidc/
→˓callback

https://<dashboard_vm_dns_name>:8250/oidc/callback

3. In the Access tab select the follwing Scopes

Scopes: openid, profile, email, address, phone, offline_access

4. Save the client.

5. Save Client ID, Client Secret and Registration Access Token or the full output json in the JSON tab for future
access.

Installation

Create the file indigopaas-deploy/ansible/inventory/group_vars/
orchestrator-dashboard.yaml with the following configured values:

dashboard_fqdn: <dashboard_vm_dns_name>
dashboard_image_name: laniakeacloud/laniakea-dashboard

dashboard_iam_issuer: "https://<iam_address>/"
dashboard_iam_client_id: "<im_client_id>'"
dashboard_iam_client_secret: "<iam_client_secret>"
dashboard_orchestrator_url: "https://<proxy_vm_dns_name>/orchestrator"
dashboard_slam_url: "https://<slam_vm_dns_name>:8443"
dashboard_cmdb_url: "https://<proxy_vm_dns_name>/cmdb"
dashboard_im_url: "https://<proxy_vm_dns_name>/im"

dashboard_tosca_template_repository_url: https://github.com/Laniakea-elixir-it/
→˓laniakea-dashboard-config.git

(continues on next page)

218 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 219

Laniakea Documentation, Release 2.0.0

220 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

26.2. Service installation 221

Laniakea Documentation, Release 2.0.0

(continued from previous page)

dashboard_tosca_template_repository_dir: "/opt/laniakea-dashboard-config"
dashboard_tosca_templates_dir: "/opt/laniakea-dashboard-config/tosca-templates"
dashboard_tosca_parameters_dir: "/opt/laniakea-dashboard-config/tosca-parameters"
dashboard_tosca_metadata_dir: "/opt/laniakea-dashboard-config/tosca-metadata"
dashboard_administrators: "['<valid_email_address>']"
dashboard_support_email: "['<valid_email_address>']"

dashboard_letsencrypt_email: "<valid_email_address>"

dashboard_enable_db: True
dashboard_db_sql_file_url: "https://raw.githubusercontent.com/Laniakea-elixir-it/
→˓orchestrator-dashboard/laniakea-stable/utils/orchestrator_dashboard.sql"
dashboard_mysql_root_password: ******
dashboard_db_password: ******

dashboard_enable_vault: True
dashboard_vault_token: "<vault_valid_token>"
dashboard_vault_iam_client_id: "vault_iam_client_id>"
dashboard_vault_iam_client_secret: "<vault_iam_client_secret"

Warning: Depending on your Cloud Provider network configuration, the database IP address needs to be further
configured, for example using the private ip address associated to the VM, when a floating IP is used.

In this case it is possible to set the database IP address adding:

dashboard_db_host: '<vm_private_ip_address>'

Warning: Set also your custom mysql password with: dashboard_mysql_root_password and
dashboard_mysql_password.

Note: A valid token to create policies and enable OIDC authentication on vault is needed. Here, for simplicity we
use the root token gathered in the Vault installation section Hashicorp Vault.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator-dashboard.yml

Video Tutorial

Post installation steps to enable the callback

If the callback is enabled, the PaaS Orchestrator (PaaS Orchestrator) needs to be configured accordingly.

In particular, the dashboard CA certificate has to be copied on the PaaS Orchestrator Virtual Machine in /etc/
orchestrator/trusted_certs.

For Let’s Encrypt certificats, those used in this wiki:

222 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

1. Connect through SSH to the Dashboard VM and copy the content of the file /etc/letsencrypt/live/
<orchestrator_dashboard_dns_name>/chain.pem.

2. Connect through SSH to the PaaS Orchestrator VM and paste the chain.pem to /etc/orchestrator/
trusted_certs/dashboard-cert.pem

3. Restart the PaaS Orchestrator with:

docker restart orchestrator

4. Once the Orchestrator is started the chain file can be removed:

rm /etc/orchestrator/trusted_certs/dashboard-cert.pem

Appendix A. Stateless version

This is a simple graphical User interface of the INDIGO PaaS orchestrator. The automated storage encryption will not
work.

Install Laniakea dashboard (stateless version)

Create the file indigopaas-deploy/ansible/inventory/group_vars/
orchestrator-dashboard.yaml with the following configured values:

dashboard_fqdn: <dashboard_vm_dns_name>
dashboard_image_name: indigodatacloud/orchestrator-dashboard

dashboard_iam_issuer: "https://<iam_address>/"
dashboard_iam_client_id: "<im_client_id>'"
dashboard_iam_client_secret: "<iam_client_secret>"
dashboard_orchestrator_url: "https://<proxy_vm_dns_name>/orchestrator"
dashboard_slam_url: "https://<slam_vm_dns_name>:8443"
dashboard_cmdb_url: "https://<proxy_vm_dns_name>/cmdb"
dashboard_im_url: "https://<proxy_vm_dns_name>/im"

dashboard_tosca_template_repository_url: https://github.com/Laniakea-elixir-it/
→˓laniakea-dashboard-config.git
dashboard_tosca_template_repository_dir: "/opt/laniakea-dashboard-config"
dashboard_tosca_templates_dir: "/opt/laniakea-dashboard-config/tosca-templates"
dashboard_tosca_parameters_dir: "/opt/laniakea-dashboard-config/tosca-parameters"
dashboard_tosca_metadata_dir: "/opt/laniakea-dashboard-config/tosca-metadata"
dashboard_administrators: "['<valid_email_address>']"

dashboard_letsencrypt_email: "<valid_email_address>"

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator-dashboard.yml

Appendix B. Database version

This version comes with a MySQL database support.

26.2. Service installation 223

Laniakea Documentation, Release 2.0.0

Install Laniakea dashboard (database version)

Create the file indigopaas-deploy/ansible/inventory/group_vars/
orchestrator-dashboard.yaml with the following configured values:

dashboard_fqdn: <dashboard_vm_dns_name>
dashboard_image_name: laniakeacloud/laniakea-dashboard:withDB

dashboard_iam_issuer: "https://<iam_address>/"
dashboard_iam_client_id: "<im_client_id>'"
dashboard_iam_client_secret: "<iam_client_secret>"
dashboard_orchestrator_url: "https://<proxy_vm_dns_name>/orchestrator"
dashboard_slam_url: "https://<slam_vm_dns_name>:8443"
dashboard_cmdb_url: "https://<proxy_vm_dns_name>/cmdb"
dashboard_im_url: "https://<proxy_vm_dns_name>/im"

dashboard_tosca_template_repository_url: https://github.com/Laniakea-elixir-it/
→˓laniakea-dashboard-config.git
dashboard_tosca_template_repository_dir: "/opt/laniakea-dashboard-config"
dashboard_tosca_templates_dir: "/opt/laniakea-dashboard-config/tosca-templates"
dashboard_tosca_parameters_dir: "/opt/laniakea-dashboard-config/tosca-parameters"
dashboard_tosca_metadata_dir: "/opt/laniakea-dashboard-config/tosca-metadata"
dashboard_administrators: "['<valid_email_address>']"

dashboard_letsencrypt_email: "<valid_email_address>"

dashboard_enable_db: True
dashboard_db_sql_file_url: "https://raw.githubusercontent.com/Laniakea-elixir-it/
→˓orchestrator-dashboard/laniakea-stable/utils/orchestrator_dashboard.sql"
dashboard_mysql_root_password: ******
dashboard_db_password: ******

Warning: Depending on your Cloud Provider network configuration, the database IP address needs to be further
configured, for example using the private ip address associated to the VM, when a floating IP is used.

In this case it is possible to set the database IP address adding:

dashboard_db_host: '<vm_private_ip_address>'

Warning: Set also your custom mysql password with: dashboard_mysql_root_password and
dashboard_mysql_password.

Run the role using the ansible-playbook command:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-orchestrator-dashboard.yml

26.2.10 The last mile: applications configuration

By default, Laniakea is configured to run the following applications:

224 Chapter 26. Laniakea installation

Laniakea Documentation, Release 2.0.0

Galaxy live build

Description The Galaxy live build allows to setup and launch a virtual machine configured with the
Operative System CentOS 7 and the auxiliary applications needed to support a Galaxy production
environment such as PostgreSQL, Nginx, uWSGI and Proftpd and to deploy the Galaxy platform
itself and the tools that come with the selected flavour.

This application can be deployed with cluster support, using SLURM as Resource Manager and with
automatica elasticity support, with CLUES as elasticity manager.

Recommended images CentOS-7-x86_64-GenericCloud-1907.qcow2

Configuration galaxy_latest

Galaxy express

Description The Galaxy express instantiate a CentOS 7 Virtual Machine with Galaxy, all its companion
software and the set of tools that come with the selected flavour. Once deployed each Galaxy instance
can be further customized with additional tools and reference data.

This application can be deployed with cluster support, using SLURM as Resource Manager.

The default available flavours currently are:

• galaxy-minimal: Galaxy production-grade server (Galaxy, PostgreSQL, NGINX, proFTPd,
uWSGI).

• galaxy-CoVaCS: workflow for genotyping and variant annotation of whole genome/exome and
target-gene sequencing data (https://www.ncbi.nlm.nih.gov/pubmed/29402227).

• galaxy-GDC_Somatic_Variant: port of the Genomic Data Commons (GDC) pipeline for the
identification of somatic variants on whole exome/genome sequencing data (https://gdc.cancer.
gov/node/246).

• galaxy-rna-workbench: more than 50 tools for RNA centric analysis (https://www.ncbi.nlm.
nih.gov/pubmed/28582575).

• galaxy-epigen: based on Epigen project (http://www.epigen.it/).

More information on Laniakea default Galaxy flavours can be found here: Galaxy Flavours.

Configuration galaxy_vm

Galaxy Docker

Description The Galaxy Docker instantiate an Ubuntu 16.04 Virtual Machine with the Galaxy official
Docker. Once deployed each Galaxy instance can be further customized with additional tools and
reference data.

Recommended images Ubuntu 16.04 LTS cloud images

Configuration galaxy_docker

Test applications

Description Two test recipes are shipped by default to test a simple Ubuntu or Centos deployment with
or without storage volume

26.2. Service installation 225

https://cloud.centos.org/centos/7/images
https://www.ncbi.nlm.nih.gov/pubmed/29402227
https://gdc.cancer.gov/node/246
https://gdc.cancer.gov/node/246
https://www.ncbi.nlm.nih.gov/pubmed/28582575
https://www.ncbi.nlm.nih.gov/pubmed/28582575
http://www.epigen.it/
https://cloud-images.ubuntu.com/xenial/

Laniakea Documentation, Release 2.0.0

Recommended images CentOS-7-x86_64-GenericCloud-1907.qcow2 or Ubuntu 16.04 LTS cloud im-
ages

Configuration test_deployments

26.2.11 Updating Laniakea

The same ansible roles used to deploy Laniakea can be used to keep it up to date.

1. Update the indigpaas-deploy ansible roles:

cd indigopaas-deploy

git pull

1. All the services run inside docker container. Therefore, in most of cases, service aupdate requires to re-create
the Docker container with the updated image. The corrisponding data are mounted inside the Docker container,
thus avoiding any data loss during the update procedure.

The services docker images can be changed in the corresponding configuration file in indigopaas-deploy/
ansible/inventory/group_vars/<service>.yaml.

2. Finally to update a service, just re-run the ansible role:

cd indigopaas-deploy/ansible

ansible-playbook -i inventory/inventory playbooks/deploy-<service>.yml

Warning: INDIGO Software catalogue is acively developed. So the update procedure of Laniakea depends on
the INDIGO services evolution. We will keep this page updated accordingly.

Note: All the (Galaxy) instances deployed with Laniakea are not influenced by the update procedure.

Current recommended configuration

Currently, the following verions of the INDIGO services are recommended:

Service Version Docker image
indigopaas-deploy v1.0 —
IAM 1.5 rc2 indigoiam/iam-login-service:v1.5.0.rc2-SNAPSHOT-latest
IM 1.8.8.1 indigodatacloud/im:1.8.6.1
CMDB indigo_2 indigodatacloud/cmdb:indigo_2
CPR indigo_2 indigodatacloud/cloudproviderranker:indigo_2
SLAM v2.0.0 indigodatacloud/slam:v2.0.0
Custom types v3.0.1 —
Orchestrator 2.1.2-final indigodatacloud/orchestrator:2.1.2-final
Vault 1.1.2 vault:1.1.2
Dashboard laniakea-stable laniakeacloud/laniakea-dashboard:stable

226 Chapter 26. Laniakea installation

https://cloud.centos.org/centos/7/images
https://cloud-images.ubuntu.com/xenial/
https://cloud-images.ubuntu.com/xenial/
im:1.8.6.1

CHAPTER 27

GitHub repository

https://github.com/Laniakea-elixir-it

227

https://github.com/Laniakea-elixir-it

Laniakea Documentation, Release 2.0.0

228 Chapter 27. GitHub repository

CHAPTER 28

DockerHub repository

https://hub.docker.com/r/laniakeacloud

229

https://hub.docker.com/r/laniakeacloud

Laniakea Documentation, Release 2.0.0

230 Chapter 28. DockerHub repository

CHAPTER 29

Support

If you need support please contact us to: laniakea.helpdesk@gmail.com

Software glitches and bugs can occasionally be encoutered. The best way to report a bug is to open an issue on our
GitHub repository.

231

https://github.com/Laniakea-elixir-it/elixir-italy-science-gateway/issues

Laniakea Documentation, Release 2.0.0

232 Chapter 29. Support

CHAPTER 30

Cite

Marco Antonio Tangaro, Giacinto Donvito, Marica Antonacci, Matteo Chiara, Pietro Mandreoli,
Graziano Pesole, Federico Zambelli, Laniakea: an open solution to provide Galaxy “on-demand” in-
stances over heterogeneous cloud infrastructures, GigaScience, Volume 9, Issue 4, April 2020, giaa033,
https://doi.org/10.1093/gigascience/giaa033

Tha paper is available here.

233

https://academic.oup.com/gigascience/article/9/4/giaa033/58166689

Laniakea Documentation, Release 2.0.0

234 Chapter 30. Cite

CHAPTER 31

Licence

As an open source project Laniakea is made up of many pieces of software created by a range of individuals, teams,
and companies. Laniakea is a collective work, and each piece of software within this work has its own license.

Your use of each piece of software is governed by the terms of its accompanying license. Redistribution of parts or the
whole of Laniakea may require you to comply with additional license requirements.

235

Laniakea Documentation, Release 2.0.0

236 Chapter 31. Licence

CHAPTER 32

Galaxy tutorials

Galaxy training network: https://galaxyproject.org/teach/gtn/

Galaxy For Developers: https://crs4.github.io/Galaxy4Developers/

237

https://galaxyproject.org/teach/gtn/
https://crs4.github.io/Galaxy4Developers/

Laniakea Documentation, Release 2.0.0

238 Chapter 32. Galaxy tutorials

CHAPTER 33

Indices and tables

• genindex

• modindex

• search

239

	Overview
	Service architecture
	ELIXIR-IIB: The Italian Infrastructure for Bioinformatics
	INDIGO-DataCloud
	The ELIXIR-IIB use case in INDIGO
	References

	Launch Galaxy
	Galaxy express
	Galaxy live build
	Instantiate Galaxy
	Galaxy access

	Launch Galaxy Docker
	Instantiate Galaxy
	Galaxy access
	References

	Launch Galaxy cluster
	Galaxy cluster
	Galaxy elastic cluster
	Instantiate Galaxy
	Galaxy access

	Manage an encrypted instance
	Retrieve the encrypted storage passphrase
	Restart Galaxy on an encrypted instance
	Command line interface: luksctl

	Create SSH Keys
	Create your SSH key with Laniakea
	Remove the SSH key from Laniakea
	How to create SSH keys on Linux or macOS
	How to create SSH keys on Windows

	Virtual hardware presets
	Laniakea@ReCaS

	Galaxy Flavours
	Galaxy minimal
	Galaxy CoVaCS
	Galaxy GDC Somatic Variant
	Galaxy RNA workbench
	Galaxy Epigen

	Submit yout flavour
	Tool list configuration options
	Conda support
	References

	Reference Data
	data.galaxyproject.org
	elixir-italy.covacs.refdata
	elixir-italy.galaxy.refdata
	Supplementary information

	Galaxy production environment
	OS support
	PostgresSQL
	NGINX
	uWSGI
	Proftpd
	Supervisord
	Paths
	Enable Dockerized tools support in job_conf.xml

	Galaxy Docker instance
	Configuration files
	CVMFS configuration
	Galaxy docker usage
	Galaxy Docker usage tutorial

	Cluster configuration
	job_conf.xml configuration
	Shared file system
	Network configuration
	Worker nodes SSH access
	Worker nodes deployment on elastic cluster
	References

	Authentication
	Registration
	Login

	Frequently Asked Questions
	How to manually recover Galaxy after VM reboot
	I’m unable to create users from admin panel

	The encryption layer
	The encryption strategy
	Storage encryption workflow
	File System Encryption Test
	Fast-luks script
	Luksctl: LUKS volumes management
	LUKSctl: APIs
	Cryptsetup hints
	References

	Galaxyctl: Galaxy management
	Galaxyctl basic usage
	Logging
	Advanced options
	Configuration file
	Features

	Laniakea Ansible Roles
	indigo-dc.galaxycloud
	indigo-dc.galaxycloud-os
	indigo-dc.galaxycloud-tools
	indigo-dc.galaxycloud-refdata
	indigo-dc.galaxycloud-fastconfig
	indigo-dc.galaxycloud_docker
	indigo-dc.cvmfs-client
	indigo-dc.cvmfs-server

	TOSCA templates
	Custom types
	Galaxy template
	Galaxy cluster template

	Build CVMFS server for reference data
	Create CernVM-FS Repository
	Client configuration
	Populate a CernVM-FS Repository (with reference data)
	Reference data download
	References

	Vault configuration
	Vault main concepts
	Vault authentication and authorization flow
	Vault passphrase storage flow
	Passphrase path on Vault

	Laniakea Dashboard
	Configuration

	Laniakea installation
	Services end-points
	Service installation

	GitHub repository
	DockerHub repository
	Support
	Cite
	Licence
	Galaxy tutorials
	Indices and tables

